Analyses granulométriques

principes et méthodes

Jérôme Fournier, Chantal Bonnot-Courtois
Raphaël Paris, Olivier Voldoire, Monique Le Vot
Ce document est destiné aux étudiants qui souhaitent effectuer des analyses granulométriques par voie de tamisage par colonne sèche ou humide selon les standards actuels.

Il est issu des cours délivrés au Laboratoire de Géomorphologie et Environnement littoral\(^1\) de l'Ecole Pratique des Hautes Etudes de Dinard lors du stage de *Techniques d'études en Géomorphologie littorale* qui s'est déroulé annuellement jusqu'en 2005 et du stage du Master Recherche *Sciences de la Vie et de la Terre, mention Environnement et Gestion de la Biodiversité*.

Les auteurs tiennent à remercier les Professeurs émérites Fernand Verger\(^2\) et Louis-Robert Lafon\(^3\) pour avoir initié ce cours et le Dr Bruno Caline\(^4\) pour l'organisation du stage pour ingénieurs *Sédimentation des Milieux actuels* qui se déroule annuellement en baie du Mont-Saint-Michel. Les photographies du matériel de laboratoire sont de Thibaut Nebout\(^5\), les autres de Jérôme Fournier.

Ce document doit être cité comme suit:

Les auteurs

Chantal Bonnot-Courtois est Directrice de Recherche au CNRS
Jérôme Fournier est Chargé de Recherche au CNRS
Raphaël Paris est Chargé de Recherche au CNRS
Olivier Voldoire est Assistant Ingénieur au CNRS
Monique Le Vot est Technicienne de Recherche à l'EPHE

1. Département Milieux, Organismes, Événement|Section des Sciences de la Vie et de la Terre
2. Ecole Pratique des Hautes Etudes et École Normale Supérieure
3. Ecole Pratique des Hautes Etudes
4. TOTAL, Carbonate and Sedimentology Group
5. Muséum National d'Histoire Naturelle
6. Muséum National d'Histoire Naturelle
Table des matières

1 Définitions 9
1.1 Principe du tamisage à sec et du tamisage sous eau 9
1.2 Principe de la sédimentométrie 10
1.3 Principe de la granulométrie par diffraction laser 10
1.4 Analyse d’image 11
 1.4.1 Grains non-usés 11
 1.4.2 Grains émoussés laisants 11
 1.4.3 Grains ronds-mats 11
 1.4.4 L’exoscopie des quartz 12
1.5 Définitions granulométriques et classes de taille 12

2 Prélèvements sur le terrain 16
2.1 Pour l’analyse granulométrique 16
 2.1.1 Accès indirect au terrain 16
 2.1.2 Accès direct au terrain 17
2.2 Pour l’analyse stratigraphique 18
 2.2.1 Carottier à main 18
 2.2.2 Boîtes de Reineck 18
 2.2.3 Carottiers tube et multi-tube 20

3 Le matériel pour le tamisage 22
3.1 Prélever et stocker 22
3.2 Laver 23
3.3 Sécher 24
3.4 Diviser 24
3.5 Tamiser 25
3.6 Penser 26
3.7 Calcinier 27
3.8 Carbonate de Calcium 27

4 Analyses granulométriques 29
4.1 Traitement des échantillons 29
 4.1.1 Choix de la fraction du sédiment à considérer 29
 4.1.2 Schéma de l’analyse granulométrique 30
 4.1.3 Techniques granulométriques 34
4.2 Traitement des données 36
 4.2.1 Mèthode des percentiles 36
 4.2.2 Mèthode des moments statistiques 40
TABLE DES MATIÈRES

4.2.3 Représentation graphique .. 45
4.2.4 Méthode des indices granulométriques 47
4.2.5 Traitement d'image ... 49

5 Autres analyses classiques .. 51
 5.1 Forme des grains .. 51
 5.1.1 Sphéricité .. 51
 5.1.2 Aplatissement .. 52
 5.1.3 Allongement ... 52
 5.1.4 Rondeur .. 52
 5.1.5 Divers .. 53
 5.2 Calcimétrie ... 56
 5.2.1 Préparation de l’échantillon 56
 5.2.2 Mode opératoire ... 56
 5.2.3 Calcul de la teneur en CaCO₃ 57
 5.3 Matière Organique ... 58
 5.3.1 Mode opératoire ... 58
 5.3.2 Calcul de la teneur en MO 58
 5.4 Teneur en eau ... 59
 5.4.1 Dosage .. 59
 5.4.2 Calcul de concentration pour un sédiment humide 59
 5.5 Tassement et rhéologie des vases 60
 5.5.1 Vitesse de chute et flocculation des particules 60
 5.5.2 Caractéristiques granulométriques, minéralogiques et chimiques des sédiments vaseux 60
 5.5.3 Tassement des vases 62
 5.5.4 Propriétés physique d’une particule solide en eau calme 63
 5.5.5 Ensemble de particules 63

6 Représentations cartographiques 65
 6.1 Légende des cartes ... 65
 6.2 Nature des fonds .. 66
 6.3 Faciès sédimentaires .. 67
 6.4 Mode opératoire .. 68

A Cartes sédimentologiques .. 70

B Article .. 78
 B.1 Exemple d’article .. 91

C Notes personnelles ... 92

Bibliographie ... 94

Index .. 98
Table des figures

1.1 Diamètre de Feret ... 10
1.2 Grain de quartz vu au MEB. Notez les nombreux impacts méca-
niques suite au tsunami de 2004 (Indonésie, cliché: R. Paris) . . 12

2.1 Benne Smith N/O Louis Fage MNHN 17
2.2 Seringue et pilulier ... 17
2.3 Boîte de Reineck ... 19
2.4 Echantillons prélevés par une boîte de Reineck et séchés . . 19
2.5 Carottier multi-tube N/O Pourquoi Pas? Ifremer 20
2.6 Carottier Calypso N/O Marion Dufresne Institut Polaire . . 20
2.7 Carottier motorisé CNRS M2C Caen 21
2.8 Carottier à moteur sur chenilles CNRS GEOLAB Clermont-Ferrand 21

3.1 Laboratoire équipé pour l’analyse granulométrique 22
3.2 Benne à sédiment Shipeck à la remontée et ouverte avec son
contenu de maërl (*Lithothamnium corallioïdes* et *Phymatholithon
calcareum*). N/O Côtes d’Aquitaine CNRS 23
3.3 Pilulier ... 23
3.4 Capsule en porcelaine avec un sédiment biogénique décanté (tube
coussin de *Lanice conchilega*) 24
3.5 Etuve ... 24
3.6 Séparateur de précision à riffle Jones 25
3.7 Tamis ... 26
3.8 Colonne de tamis et tamiseuse 26
3.9 Balance de précision ... 27
3.10 Four à moule ... 27
3.11 Calcimètre Bernard .. 28

4.1 Diagrammes de Robinson, Shepard et Folk 34
4.2 Standard visuel pour l’estimation du tri (*a* logarthmique de
Folk & Ward, 1957) ... 38
4.3 Indice d’asymétrie et forme de la courbe de fréquence 39
4.4 Paramètres d’acuité et forme de la courbe de fréquence 40
4.5 Faciès parabolique, logarithmique, hyperbolique et composé . 43
4.6 Représentation classique d’une analyse granulométrique 45
4.7 Vitesse de chute en fonction du diamètre pour des sphères de
quartz dans l’eau à 20°C .. 47
TABLE DES FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Diagramme de Hjulstrom. Relation entre la taille du grain, la vitesse de flux et le type de mouvement sédimentaire (densité du sédiment: 2.65 g/cm2)</td>
<td>48</td>
</tr>
<tr>
<td>4.9</td>
<td>Détermination graphique de l’indice global d’évolution N en fonction de \bar{x} et x_{100}</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>Caractérisation visuelle du degré d’émoussé des grains de sable</td>
<td>53</td>
</tr>
<tr>
<td>5.2</td>
<td>Diagramme de Zingg dans lequel chaque point représente un caillou (Germain et Filion, 2002. Géographie physique et quaternaire, 56(1):81-95)</td>
<td>54</td>
</tr>
<tr>
<td>5.3</td>
<td>Diagramme de Zingg. L: longueur (axe a), I: largeur (axe b), S: épaisseur (axe c) [Traduction: flach: disque; kugelig: sphère; stengelig: tige; flachstengelig: lame]</td>
<td>54</td>
</tr>
<tr>
<td>5.4</td>
<td>Diagramme de Sneed et Folk. 10 classes: C (compact), CP(compact-platy), CB (compact-bladed), CE (compact-elongate), P (platy), B (bladed), E (elongate), VP (very platy), VB (very bladed), VE (very elongate)</td>
<td>55</td>
</tr>
<tr>
<td>5.5</td>
<td>Relation entre l’indice de sphéricité et celui d’aplatissement. Chaque point représente un site d’échantillonnage (moyenne de éléments) (Germain et Filion, 2002. Géographie physique et quaternaire, 56(1):81-95)</td>
<td>55</td>
</tr>
<tr>
<td>5.6</td>
<td>Opérations d’une calcimétrie</td>
<td>57</td>
</tr>
<tr>
<td>6.1</td>
<td>Légendes utilisées pour les cartes sédimentologiques de l’archipel de Chausey</td>
<td>66</td>
</tr>
<tr>
<td>6.2</td>
<td>Sonar acoustique EdgeTech à bord du N/O Serpula Heriot-Watt University, Edinburgh</td>
<td>68</td>
</tr>
<tr>
<td>6.3</td>
<td>Image acoustique du Chenal de Beauchamp, Archipel de Chausey</td>
<td>68</td>
</tr>
<tr>
<td>A.1</td>
<td>Carte morpho-sédimentologique de l’archipel de Chausey</td>
<td>71</td>
</tr>
<tr>
<td>A.2</td>
<td>Carte des figures sédimentaires de l’archipel de Chausey</td>
<td>72</td>
</tr>
<tr>
<td>A.3</td>
<td>Carte des faciès sédimentaires de l’archipel de Chausey</td>
<td>73</td>
</tr>
<tr>
<td>A.4</td>
<td>Carte des formations superficielles de l’archipel de Chausey</td>
<td>74</td>
</tr>
<tr>
<td>A.5</td>
<td>Carte de la distribution du calcaire de l’archipel de Chausey</td>
<td>75</td>
</tr>
<tr>
<td>A.6</td>
<td>Carte des groupes texturaux de l’archipel de Chausey</td>
<td>76</td>
</tr>
<tr>
<td>A.7</td>
<td>Carte sédimentologique de la baie du Mont-Saint-Michel</td>
<td>77</td>
</tr>
<tr>
<td>A.8</td>
<td>Carte bio-sédimentologique du récif de Sabella sabulosa de Champeaux</td>
<td>77</td>
</tr>
</tbody>
</table>
Liste des tableaux

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Dénitions granulométriques selon Bellair et Pomerol (1977)</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>Dénitions granulométriques selon Bonnot-Courtois et Fournier (non publié)</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Dénitions granulométriques selon Migniot (non publié)</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Dénitions granulométriques pour les graviers, galets et blocs (non publié, modifié de Blair et McPherson, 1999)</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Caractérisation sédimentaire d’après Larsonneur (1977)</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>Classes de tailles selon Udden (1914), Wentworth (1922), Friedman et Sanders (1978) et Blott et Pye (2001)</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Feuille de données</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Table d’équivalence entre les unités granulométriques</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>Interprétation de N</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Conversion des diamètres expérimentaux (vide de maille) en diamètres de Stokes-Berthois (Rivière et Vernhet, 1973)</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Equivalences mailles tamis AFNOR et $X\Delta$</td>
<td>49</td>
</tr>
<tr>
<td>5.1</td>
<td>Relation vitesse de chute vs taille des sédiments</td>
<td>60</td>
</tr>
</tbody>
</table>
Chapitre 1

Définitions

La granulométrie a pour objet la mesure de la taille de particules élémentaires ou de grains. Les méthodes qui permettent cette mesure doivent être reproductibles ; c'est pourquoi elles suivent des normes strictes. Ces méthodes sont le tamisage, les méthodes optiques, le tri par fluide ou les méthodes électriques.

- le tamisage à sec (> 100 µm)
- le tamisage sous eau (> 30 µm)
- la sédimentométrie (1 à 100 µm)
- la centrifugation (0.1 à 20 µm)
- la diffraction laser (0.02 à 2 mm)
- la microscopie optique (> 50 µm à 2 mm)

La granulométrie consiste aussi en l'analyse de la distribution statistique des classes de tailles d'une collection de grains. Le diamètre d'une particule se mesure à l'aide du diamètre de Feret qui mesure une taille dans une direction a donnée. On définit l'exo-diamètre comme étant la position de D pour laquelle D_f est maximal et le méso-diamètre avec D_f minimal [39] (Fig. 1.1).

La forme du grain peut être définie par un indice qui mesurerait la surface de l'aire projetée par le grain à la surface du cercle ayant un diamètre égal à l'exo-diamètre. Le diamètre équivalent correspond au diamètre de la sphère qui se comporterait de manière identique lors d'une analyse granulométrique. Il est important de noter qu'une particule d'origine bioclastique ne présentera pas la même taille selon la méthode utilisée, le granulomètre par diffraction laser ou la granulométrie par colonne de tamis par exemple.

1.1 Principe du tamisage à sec et du tamisage sous eau

Le tamisage consiste à mesurer le poids de sédiment retenu par les toiles de mailles de tamis calibrés. Chaque tamis est superposé par taille de maille décroissante selon une progression mathématique. Le poids de sédiment retenu (refus de tamis) peut alors être connu. On utilise une tamiseuse qui va faire

1. sous forme de petite plaque ou de tuile
vibrer l’ensemble de la colonne pendant un temps précis. Il est possible de réaliser cette opération à sec lorsque les grains sont relativement grosiers (à partir des silts). Si le sédiment à analyser est composé de particules fines (vase), le tamisage s’effectue sous un flux d’eau ou, plus rarement, d’un autre liquide (alcool par exemple). Il faut alors laisser décanter puis sécher chaque refus avant de les peser.

1.2 Principe de la sédimentométrie

Il s’agit de mesurer le temps de sédimentation dans une colonne d’eau. La loi de Stokes qui décrit la vitesse de chute des particules permet de déterminer la taille des grains. Différentes méthodes sont utilisées.

- la pipette d’Andreasen
- la sédimentométrie X
- la balance de Martin

Les plus courantes sont la pipette d’Andreasen qui permet de mesurer à un temps donné et une hauteur donnée la concentration en matière de la suspension et la sédimentométrie par rayonnement X qui mesure l’absorption du rayonnement par la suspension à une hauteur donnée et un temps donné qui dépend de la concentration. Enfin, la balance de Martin mesure la quantité de matière déposée sur un plateau en fonction du temps.

1.3 Principe de la granulométrie par diffraction laser

Basé sur le principe de la diffraction de la lumière, les grains en suspension dans l’eau diffraquent une lumière émise par un faisceau laser. La taille des particules modifie la répartition spatiale de la lumière qui est enregistrée par des
photo-diodes. La proportion de chaque classe dimensionnelle est alors déterminée. Cette méthode, très précise, est toutefois limitée par la longueur d’onde du faisceau laser et par la transparence des grains. Il est nécessaire que les grains soient suffisamment opaques et d’une taille supérieure à celle de la longueur d’onde de la lumière. Si on prend en compte la diffusion et la réflexion de la lumière par les grains, les mesures de taille de grain nettement plus faible peuvent être réalisées. Les plus récents granulomètres par diffraction laser utilisent ce principe (Beckman Coulter LS-13320 ©, Cilas 1090/1190 ©, Malvern Mastersizer 2000 ©, Shimadzu SALD et IG-1000 ©, ...).

1.4 Analyse d’image

Les observations morphoscopiques sont effectuées à la loupe binoculaire. Des photographies numériques sont prises via une caméra reliée à l’ordinateur. L’image numérique peut être analysée par une application logicielle dédiée (ImageJ 1.44 © par exemple). Cette méthode permet la mesure des tailles de grains à partir d’une image transformée (binaire). Elle permet aussi de mesurer la forme de la particule et de connaître son origine (morphoscopie, nature du minéral). Cette méthode a le défaut, inhérent à son principe, de ne mesurer le grain ou la particule qu’en deux dimensions.

Suite aux travaux pionniers de Sorby (XIXe siècle) et Cayeux (1929), Cailleux a développé la morphoscopie qui consiste à trier les fractions granulométriques d’un échantillon sédimentaire puis à classer les grains par observation optique (×5 à ×80) selon des critères de forme et d’aspect de surface, qui reflètent leur histoire et peuvent fournir des indices sur l’évolution des milieux et le mode de mise en place des sédiments. La morphoscopie a pour objectif de déterminer les milieux de dépôt des grains. Cailleux a défini trois catégories principales.

1.4.1 Grains non-usés

Ils se caractérisent par une forme anguleuse que les cristaux soient auto-orphes ou pas. Les arêtes ne doivent présenter aucune trace de polissage, ni d’arrondissement. L’aspect de la surface peut être mat ou luisant. Ces grains proviennent des arènes, des dépôts glaciaires et sont généralement d’origine proxi-male.

1.4.2 Grains émoussés luisants

Les arêtes de cette catégorie de grains offrent une forme arrondie jusqu’à présenter une forme sub-sphérique ou sphérique. L’aspect de la surface est très poli et brillant. Ces grains sont caractéristiques des rivières et fleuves, des plages littorales et de la plateforme continentale. Leur origine est déjà nettement plus distale.

1.4.3 Grains ronds-mats

La forme de ces grains correspond à une sphère presque parfaite. L’aspect de la surface est toujours dépoli et mat. Ces grains caractérisent un transport éolien. Ils sont typiques des dunes littorales et/ou des déserts sableux (Fig. 1.2).
CHAPITRE 1. DÉFINITIONS

1.4.4 L’exoscopie des quartz

La surface des grains de quartz est marquée par de nombreuses traces qui possèdent des formes et des tailles caractéristiques des facteurs qui les ont formés. Ces facteurs peuvent être d’origine physique, chimique, mécanique ou encore biologique. L’exoscopie permet d’observer et d’interpréter cet état de surface par l’analyse d’images prises par microscopie électronique à balayage (MEB), à des grossissements typiquement compris entre \(\times 500 \) et \(\times 20000 \). Près de 250 caractères ont été listés [35] [41] [42]. Ils permettent de déterminer le milieu de dépôt d’un grain, son histoire et parfois son origine géographique. Il est vivement recommandé de privilégier la fraction 250–355 \(\mu m \). Les échantillons sont d’abord lavés dans un bain d’acide chlorhydrique (HCl) dilué, puis rinçés à l’eau distillée. Après séchage, on sélectionne les grains, qui sont ensuite métallisés sous vide d’air (or, carbone ou argent).

![Image de quartz](image)

Fig. 1.2 – Grain de quartz vu au MEB. Notez les nombreux impacts mécaniques suite au tsunami de 2004 (Indonésie, cliché: R. Paris)

1.5 Définitions granulométriques et classes de taille

Les définitions granulométriques sont nombreuses et variables selon les auteurs, l’échelle spatiale des secteurs géographiques étudiés et la nature des sédiments rencontrés. Quelques exemples peuvent être donnés [60] [56].

<table>
<thead>
<tr>
<th>Classes</th>
<th>Blocs (anguleux)</th>
<th>Galets (arrondis)</th>
<th>Graviers</th>
<th>Sables</th>
<th>Sablons</th>
<th>Silts</th>
<th>Lutites</th>
<th>Argiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudites</td>
<td>20 mm</td>
<td>2 mm</td>
<td></td>
<td>0.063</td>
<td>0.050</td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
</tbody>
</table>

Tab. 1.1 – Définitions granulométriques selon Bellair et Pomerol (1977)
CHAPITRE 1. DÉFINITIONS

Tab. 1.2 – Définitions granulométriques selon Bonnot-Courtois et Fournier (non publié)

<table>
<thead>
<tr>
<th>Taille</th>
<th>Dénomination</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 20 mm</td>
<td>Galets</td>
</tr>
<tr>
<td>5 à 20 mm</td>
<td>Graviers</td>
</tr>
<tr>
<td>2 à 5 mm</td>
<td>Grânes</td>
</tr>
<tr>
<td>1 à 2 mm</td>
<td>Sable grossier</td>
</tr>
<tr>
<td>0.5 à 1 mm</td>
<td>Sable moyen</td>
</tr>
<tr>
<td>200 µm</td>
<td>Sable fin</td>
</tr>
<tr>
<td>63 µm</td>
<td>Sablon grossier</td>
</tr>
<tr>
<td>63 à 100 µm</td>
<td>Sablon fin</td>
</tr>
<tr>
<td>40 à 63 µm</td>
<td>Silt</td>
</tr>
<tr>
<td>2 à 40 µm</td>
<td>Vase</td>
</tr>
<tr>
<td>< 2 µm</td>
<td>Argiles</td>
</tr>
</tbody>
</table>

Tab. 1.3 – Définitions granulométriques selon Migniot (non publié)

<table>
<thead>
<tr>
<th>Type</th>
<th>Dénomination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudites</td>
<td>> 200 mm</td>
</tr>
<tr>
<td>Galets</td>
<td>20 à 200 mm</td>
</tr>
<tr>
<td>Graviers</td>
<td>> 2 à 20 mm</td>
</tr>
<tr>
<td>Arénites</td>
<td>Sable très grossier</td>
</tr>
<tr>
<td></td>
<td>1 à 2 mm</td>
</tr>
<tr>
<td></td>
<td>Sable grossier</td>
</tr>
<tr>
<td></td>
<td>0.5 à 1 mm</td>
</tr>
<tr>
<td></td>
<td>Sable moyen</td>
</tr>
<tr>
<td></td>
<td>0.25 à 0.5 mm</td>
</tr>
<tr>
<td></td>
<td>Sable fin</td>
</tr>
<tr>
<td></td>
<td>125 à 250 µm</td>
</tr>
<tr>
<td></td>
<td>Sable très fin</td>
</tr>
<tr>
<td></td>
<td>63 à 125 µm</td>
</tr>
<tr>
<td>Lutites</td>
<td>Silt</td>
</tr>
<tr>
<td></td>
<td>4 à 63 µm</td>
</tr>
<tr>
<td>Precolloïdes</td>
<td>0.12 à 4 µm</td>
</tr>
<tr>
<td>Colloïdes</td>
<td>< 0.12 µm</td>
</tr>
</tbody>
</table>
CHAPITRE 1. DÉFINITIONS

Tab. 1.4 – Définitions granulométriques pour les graviers, galets et blocs (non publié, modifié de Blair et McPherson, 1999)

<table>
<thead>
<tr>
<th>Classe</th>
<th>Taille (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sable</td>
<td><2</td>
</tr>
<tr>
<td>Gravier très fin</td>
<td>2–4</td>
</tr>
<tr>
<td>Gravier fin</td>
<td>4–8</td>
</tr>
<tr>
<td>Gravier moyen</td>
<td>8–16</td>
</tr>
<tr>
<td>Gravier grossier</td>
<td>16–32</td>
</tr>
<tr>
<td>Gravier très grossier</td>
<td>32–64</td>
</tr>
<tr>
<td>Petit galet</td>
<td>64–90</td>
</tr>
<tr>
<td>Galet moyen</td>
<td>90–128</td>
</tr>
<tr>
<td>Gros galet</td>
<td>128–180</td>
</tr>
<tr>
<td>Très gros galet</td>
<td>180–256</td>
</tr>
<tr>
<td>Petit bloc</td>
<td>256–512</td>
</tr>
<tr>
<td>Bloc moyen</td>
<td>512–1024</td>
</tr>
<tr>
<td>Gros bloc</td>
<td>1024–2048</td>
</tr>
<tr>
<td>Très gros bloc</td>
<td>2048–4096</td>
</tr>
<tr>
<td>Mégabloç</td>
<td>>4096</td>
</tr>
</tbody>
</table>

Tab. 1.5 – Caractérisation sédimentaire d’après Larsonneur (1977)

<table>
<thead>
<tr>
<th>Type de dépôt</th>
<th>Caractérisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cailloutis</td>
<td>> 50% de galets</td>
</tr>
<tr>
<td>Graviers</td>
<td>> 50% galets et de graviers</td>
</tr>
<tr>
<td>Sables</td>
<td>> 50% de fraction < 2 mm; < 5% de lutites</td>
</tr>
<tr>
<td>sables graveleux</td>
<td>> 15% de graviers</td>
</tr>
<tr>
<td>sables grossiers</td>
<td>fraction 0.5–2 mm dominante</td>
</tr>
<tr>
<td>sables fins</td>
<td>fraction 0.2–0.5 mm dominante</td>
</tr>
<tr>
<td>sablons</td>
<td>fraction 0.05–0.2 mm dominante</td>
</tr>
<tr>
<td>Sédiments vaseux</td>
<td>> 5% de lutites</td>
</tr>
<tr>
<td>sables vaseux</td>
<td>de 5% à 25% de lutites</td>
</tr>
<tr>
<td>vases vaseuse</td>
<td>de 25% à 75% de lutites</td>
</tr>
<tr>
<td>vases sableuses</td>
<td>plus de 75% de lutites</td>
</tr>
</tbody>
</table>
Tab. 1.6 - Classes de tailles selon Udden (1914), Wentworth (1922), Friedman et Sanders (1978) et Blott et Pye (2001)

<table>
<thead>
<tr>
<th>Taille de grain ϕ</th>
<th>Terminologie</th>
<th>Udden (1914)</th>
<th>Wentworth (1922)</th>
<th>Friedman & Sanders (1978)</th>
<th>Blott & Pye (2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11 2048 mm</td>
<td>Very large boulders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10 1024</td>
<td>Large boulders</td>
<td></td>
<td></td>
<td>Very large</td>
<td></td>
</tr>
<tr>
<td>-9 512</td>
<td>Cobbles</td>
<td>Medium boulders</td>
<td>Large</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-8 256</td>
<td>Small boulders</td>
<td>Medium boulders</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-7 128</td>
<td>Large cobbles</td>
<td>Large cobbles</td>
<td>Small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-6 64</td>
<td>Small cobbles</td>
<td>Small cobbles</td>
<td>Very small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5 32</td>
<td>Very coarse pebbles</td>
<td>Coarse pebbles</td>
<td>Very coarse pebbles</td>
<td>Very coarse</td>
<td></td>
</tr>
<tr>
<td>-4 16</td>
<td>Pebbles</td>
<td>Coarse pebbles</td>
<td>Coarse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3 8</td>
<td>Medium pebbles</td>
<td>Medium pebbles</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2 4</td>
<td>Fine pebbles</td>
<td>Fine pebbles</td>
<td>Fine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1 2</td>
<td>Granules</td>
<td>Very fine pebbles</td>
<td>Very fine pebbles</td>
<td>Very fine</td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>Very coarse sand</td>
<td>Very coarse sand</td>
<td>Very coarse sand</td>
<td>Very coarse sand</td>
<td></td>
</tr>
<tr>
<td>1 500 μm</td>
<td>Coarse sand</td>
<td>Coarse sand</td>
<td>Coarse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 250</td>
<td>Medium sand</td>
<td>Medium sand</td>
<td>Medium sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 125</td>
<td>Fine sand</td>
<td>Fine sand</td>
<td>Fine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 63</td>
<td>Very fine sand</td>
<td>Very fine sand</td>
<td>Very fine sand</td>
<td>Very fine sand</td>
<td></td>
</tr>
<tr>
<td>5 31</td>
<td>Very coarse silt</td>
<td>Very coarse silt</td>
<td>Coarse silt</td>
<td>Coarse silt</td>
<td></td>
</tr>
<tr>
<td>6 16</td>
<td>Silt</td>
<td>Coarse silt</td>
<td>Coarse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 8</td>
<td>Medium silt</td>
<td>Medium silt</td>
<td>Medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 4</td>
<td>Fine silt</td>
<td>Fine silt</td>
<td>Fine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 2</td>
<td>Clay</td>
<td>Very fine silt</td>
<td>Very fine silt</td>
<td>Very fine silt</td>
<td>Clay</td>
</tr>
</tbody>
</table>
Chapitre 2

Prélèvements sur le terrain

L'extraction de sédiment sur le terrain nécessite l'utilisation de techniques très variées selon la nature du terrain, le problème posé et le type d'analyse, le type de sédiment (des vases aux méga-blocs) et la quantité de sédiment à analyser.

2.1 Pour l'analyse granulométrique

2.1.1 Accès indirect au terrain

Le terrain peut être de nature très variable selon sa localisation - océan, littoral, lac et étang, fleuve et rivière, bras-mort -. Le terrain d’étude peut être accessible directement ou indirectement. Dans le cas d’un travail réalisé en mer, en rivière ou sur un lac... par exemple, prélever du sédiment nécessitera l’utilisation de moyens spécifiques comme un navire, un semi-rigide voire une embarcation légère de type kayak. Les instruments permettant l’extraction de sédiment seront adaptés selon l’embarcation choisie: bennes dédiées à l’extraction de sédiment comme les bennes Shipperk, Eckman, Orange-Peel, Ponar, Petersen, Boxcorer ou dédiées à l’extraction du benthos mais pouvant servir aussi à celle du sédiment comme les bennes Hamon, Smith-Mac Intyre, Van Veen... (Fig. 2.1). Lors d’une extraction par benne, le sédiment est mélangé et la structure mise en place lors de la phase de dépôt n’est plus respectée. En outre, une benne ne permet que l’enregistrement des derniers événements sédimentaires, car l’extraction se fait sur les premiers centimètres ou dizaines de centimètres tout au plus.

La quantité de sédiment est souvent importante lors de prélèvements via une benne. Il faut ainsi considérer les possibilités de stockage et les problèmes logistiques qui sont liés (transport par exemple). Le stockage s’effectue généralement dans des sacs à échantillon de grande taille ou des containers étanches. Lors de campagnes d’échantillonnages importantes, il est nécessaire d’évoquer le problème de la durée du stockage. Si des analyses portent sur la matière organique par exemple, le stockage du sédiment doit impérativement être de courte durée avant l'analyse. Dans le cas contraire, il est possible de congeler le matériel sédimentaire. Il est rare que l’analyse granulométrique porte sur la totalité du prélèvement. Le sous-échantillonnage doit respecter certaines règles. L’utilisation d’un séparateur est alors nécessaire.
2.1.2 Accès direct au terrain

Le prélèvement sur le terrain s’effectue directement dans le cas d’une étude portant sur une dune, une plage, un banc de sable, un cordon de galets ou de blocs, plus généralement sur le domaine intertidal... Certaines opérations peuvent parfois être réalisées en plongée subaquatique. Les techniques sont généralement identiques à celles utilisées à pied sec mais doivent être adaptées. La nature du sédiment va conditionner la quantité de matériel à prélever et la méthode qui sera utilisée. Dans le cas de sédiments meubles (jusqu’aux petits graviers), il est possible d’utiliser une seringue vétérinaire d’un diamètre inférieur à celui d’un pilulier (diamètre de 3 cm, hauteur de 5 cm soit 141 cm3) (Fig. 2.2). La seringue est enfoncee (ouverte) dans le sédiment. Le contenu est ensuite injecté dans le pilulier dont le volume1 est largement suffisant pour caractériser un sédiment que ce soit par tamisage via une colonne de tamis ou par diffraction laser.

Lorsque le matériel sédimentaire est très grossier (cas des graviers, galets et blocs), la technique de mesure change complètement. Il est difficile voire impossible de prélever le matériel pour une analyse ultérieure en laboratoire en raison du poids et du volume que représente ce type de matériel. Plusieurs méthodes

1 $\pi \times R^2 \times h$
ont été développées pour ce type de matériel dont la méthode de Cailleux et Tricart [11] ou, plus récente, celle de Wolman [32] [33] qui consiste à mesurer les trois axes des galets (grand axe A, axe intermédiaire B et petit axe C) selon un transect ou un quadrat. La taille de la zone d’échantillonnage doit être choisie avec soin en fonction de la taille des galets/blocs, de leur distribution dans l’espace (distribution régulière, par noyaux, aléatoire, espacée ou non…). Des tests statistiques préalables peuvent être très utiles avant de procéder à l’acquisition définitive des données. La réplication des prélèvements est nécessaire dans le cas de traitements statistiques. Lors de ce type de mesure, il est souhaitable d’effectuer une photographie (orientée au Nord) de la zone d’échantillonnage avant la mesure des galets au pied à coulisse (par exemple). Les photographies permettent ensuite d’analyser l’orientation et les fabricles de galets et de blocs [6] [14] [15].

2.2 Pour l’analyse stratigraphique

Le prélèvement de sédiment sous la forme d’une carotte permet d’analyser la structure des dépôts (stratigraphie séquentielle par exemple) et/ou d’effectuer des analyses granulométriques selon la structure. Plusieurs matériels permettent l’extraction de carottes. Les carottiers à main, les carottiers-tubes pour extraire des carottes longues mais de faible diamètre et les carottiers-boîtes (boîte de Reineck) pour des prélèvements courts de grande section.

De manière générale, il est préférable de choisir une technique qui respecte l’intégrité du sédiment. Le sédiment est toutefois systématiquement tassé et des effets de bords existent.

2.2.1 Carottier à main

Il peut être fabriqué à l’aide d’un tube de PVC que l’on bouché aux deux extrémités une fois le sédiment prélevé. Le diamètre du tube est un paramètre important à considérer. Il sera choisi en fonction de la nature du sédiment rencontré sur le terrain d’étude (présence ou non d’éléments grossiers limitant la profondeur). Il est possible d’extraire manuellement des carottes de plusieurs décimètres de hauteur (~ 50 cm maximum). Il est parfois nécessaire de creuser autour de la carotte pour l’extraire du sédiment. Ce type de carottier est enfoncé à la main ou à l’aide d’une masse et peut être utilisé en plongée subaquatique. Les sondages à l’aide d’une tarière manuelle sont encore très pratiqués, mais principalement en guise de reconnaissance car les sédiments remontés sont souvent fortement perturbés. Enfin, le carottier russe permet d’extraire des demi-carottes de 50 cm de long (tubes PVC coupés dans le sens de la longueur) dans des sédiments facilement pénétrables (ex. tourbières).

2.2.2 Boîtes de Reineck

La boîte de Reineck consiste en une boîte sans fond, de section carrée (20-30 cm de côté et 50-80 cm de hauteur) (Fig. 2.3). Une plaque contre obture par le côté la boîte et traverse le sédiment. Ces boîtes existent sous différentes formes et tailles selon qu’elles s’étaient à la main ou à l’aide de treuils embarqués à bord de navires oceanographiques.
La boîte remplie de sédiment est mise à sécher pendant 3 semaines dans un local sec et aéré. Une fois séchée, la plaque coulèv est ôtée délicatement. Le sédiment peut être encollé par une résine (type marine). Une gaze est posée sur le sédiment encollé. Une deuxième couche de résine est posée. Le séchage de la résine doit durer une semaine. La boîte peut alors être retournée sur une plaque de bois\(^2\) préalablement encollée. On ôte la boîte et on laisse sécher à nouveau une semaine. Une fois le matériel entièrement sec, à l’aide d’un petit jet d’eau, on ôte le sédiment non encollé. La structure sédimentaire devient alors parfaitement lisible et peut faire l’objet d’une interprétation (Fig. 2.4).

\(^2\) en contreplaqué mariné
2.2.3 Carottiers tube et multi-tube

Il s’agit d’un long tube en métal qui s’enfonce par gravité dans le sédiment. Ce tube contient une chemise amovible et un système d’obturation\(^3\). Plusieurs tubes peuvent être réunis dans un bâti unique. Ce type de carottier *multi-tube* permet de prélever une dizaine de carottes en un même lieu rapidement dans les environnements de sables fins ou vaseux (Fig. 2.5). Il existe bien d’autres carottiers qui sont utilisés en océanographie. Le *N/O Marion Dufresne* de l’Institut Polaire est capable d’extraire des carottes de 60 m de longueur à l’aide de son carottier Calypso (Fig. 2.6).

\(\text{Fig. 2.5 – Carottier multi-tube *N/O Pourquoi Pas? Ifremer*}\)

\(\text{Fig. 2.6 – Carottier Calypso *N/O Marion Dufresne Institut Polaire*}\)

\(^3\) système du carottier Kulenbing
Pour les prélèvements à terre, différents types de carottiers motorisés sont utilisés, suivant les types de sédiments ou de roches à pénétrer et suivant la largeur/profondeur du carottage. Deux exemples de carottiers à moteur sont présentés ci-dessous (Fig. 2.7 et 2.8). Ils permettent de forer à des profondeurs plus importantes et surtout dans des types de terrain difficiles à pénétrer par d'autres moyens. Le contrôle de la profondeur de forage doit être rigoureux car des phénomènes de compaction peuvent se produire.

Fig. 2.7 – Carottier motorisé CNRS M2C Caen

Fig. 2.8 – Carottier à moteur sur chenilles CNRS GEOLAB Clermont-Ferrand
Chapitre 3

Le matériel pour le tamisage

Un laboratoire de sédimentologie contient plusieurs instruments destinés à l’analyse granulométrique. L’idéal est de disposer d’un plan de travail laissé libre et dédié au lavage et à la décanťation des échantillons. Pour information, 40 capsules de 30 cm de diamètre placées côte à côte représentent 2,8 m². Le laboratoire doit disposer de postes de travail dédiés à la pesée, à l’observation des échantillons, éventuellement d’un poste informatique permettant la saisie des données. Le reste du laboratoire est dédié au séchage, au tamisage et aux analyses chimiques (Fig. 3.1).

3.1 Prélever et stocker

Plusieurs modèles de bennes sont dédiées au prélèvement de sédiment. La benne Shipack compte parmi les plus utilisées (Fig. 3.2). Le ressort qui l’active est très puissant. De ce fait, elle est presque étanche, conserve bien les sédiments fins et reste efficace pour tout type de fonds, y compris ceux tapissés de caillouls.

A pied sec, l’échantillon de sédiment peut être prélevé sur le terrain à l’aide d’une seringue vétérinaire d’un diamètre inférieur à celui du pilulier (Fig. 2.2, 3.3) dans le cas de sédiments peu grossiers (< 5 mm). Le nom de l’échantillon doit être indiqué au marqueur indélébile sur le côté du tube et sur le bouchon.

1. loupe binoculaire et/ou microscope
3.2 Laver

Le contenu du pilulier est placé dans une capsule (Fig. 3.4) dans laquelle on ajoute de l’eau distillée. A l’aide d’un agitateur en verre, on mélange le sédiment à l’eau et on laisse décanté jusqu’à ce que l’eau soit parfaitement claire. On siphonne ensuite le trop-plein à l’aide d’un tube chirurgical en latex par exemple. L’opération peut être répétée plusieurs fois jusqu’à ce que le sédiment soit parfaitement dessalé. Lors de cette opération, on ôte à l’aide d’une pince tous les débris (algues, bois…) qui flottent en surface.

Certains échantillons demandent une préparation plus longue. Citons le cas particulier des tubes sableux générés par certaines Annelides Polychètes. Les grains ne peuvent pas se détacher aisément car ils sont liés entre eux par un ciment bionminéral. Après avoir rincé les tubes, il est nécessaire d’effectuer une légère attaque au peroxyde d’hydrogène (à 50%). La capsule est ensuite placée sur une plaque chauffante à 40°C pendant une dizaine de minutes. Les grains se détachent progressivement et tombent au fond de la capsule. Les tubes muqueux internes de l’animal peuvent être ôtés à l’aide d’une pince (Fig. 3.4).
CHAPITRE 3. LE MATÉRIEL POUR LE TAMISAGE

Fig. 3.4 – Capsule en porcelaine avec un sédiment biogénique décanté (tube coquillier de Lanice conchilega)

3.3 Sécher

Les échantillons décantés sont placés dans une étuve (Fig. 3.5) pour y être séché. Selon la nature du sédiment et le type d’analyse, les échantillons vont sécher de 24 à 48h à une température de 50°C à 60°C. Lors de la montée en température, il est souhaitable de rester à proximité de l’étude pour en vérifier le bon fonctionnement. Certaines étuves permettent de limiter la température à l’aide d’une sécurité².

Fig. 3.5 – Étuve

3.4 Diviser

Le séparateur permet de diviser un échantillon de sédiment en deux parties rigoureusement égales (Fig. 3.6). Ceci est très pratique lorsque l’échantillon a

2. voyant ou alarme
été prélevé à l’aide d’une benne embarquée sur un navire. Le volume de sédiment à traiter est important et il n’est pas nécessaire de l’analyser dans sa totalité. On verse la totalité du sédiment lavé et séché dans le bac verseur du séparateur. Le sédiment va se séparer en deux sous-échantillons récupérés par deux bacs. L’opération est répétée jusqu’à obtenir le volume de sédiment souhaité.

3.5 Tamiser

Un tamis (Fig. 3.7) est composé d’une toile de mailles dont l’ouverture est déterminée. Généralement les tamis les plus fins ont une taille de 40 µm. Les tamis les plus larges sont nommés passoires (à partir de 3.315 mm). Pour information, les tamis AFNOR respectent la progression suivante : 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800 µm, 1, 1.25, 1.6, 2, 2.5 mm et les passoires : 3.315, 4, 5, 6.3, 8, 10, 12.5, 16, 20, 25 mm. D’autres nomenclatures sont parfois utilisées, avec des tamis en unités phi par exemple.

Les tamis sont placés les uns sur les autres dans le sens décroissant. Le sédiment sec est déversé au sommet de la colonne (Fig. 3.8). On utilise un fond étanche à la base de la colonne pour récupérer le refus.

La colonne est placée sur une tamiseuse (Fig. 3.8) qui la fait vibrer à une fréquence connue pendant un temps connu (généralement 10 minutes). Le sédiment va ainsi être trié selon la taille des grains qui le compose. Chaque refus est alors versé délicatement dans une capsule pour être pesé. Un grand soin doit être apporté lorsqu’on enlève les derniers grains qui restent dans le tamis. On utilise généralement un pinceau ou une brosse (selon la finesse de la maille). On ne doit jamais appuyer sur le tamis à l’aide de la brosse et on ne doit jamais enlever par la force un grain resté bloqué dans une maille. Il existe des systèmes de nettoyage des tamis qui utilisent les ultra-sons. Les tamis ne...
doivent pas être désolidarisés et la colonne ne doit pas être dépareillée. Il est parfois utile d’utiliser un tamis d’une taille précise sur le terrain mais ce tamis ne doit pas appartenir à une colonne utilisée en laboratoire. L’usure des tamis doit être homogène [39]. Pour cette raison, la colonne doit être changée dans sa totalité (au moins les tamis).

3.6 Peser

Chaque refus de tamis est pesé à l’aide d’une balance de précision, préalablement stabilisée sur un plan parfaitement horizontal, tarée et à l’abri des mouvements d’air (Fig. 3.9). Il est également essentiel que la balance de précision soit étalonnée par un organisme certifié avec une périodicité adaptée. Les données sont notées sur une feuille (Tab. 4.1) avant d’être intégrées dans un tableur à fin d’analyses statistiques. Les refus sont stockés pour archivage dans des sachez clairement identifiés. Il est souvent utile de stocker séparément les fractions supérieures et inférieures à 40 ou 63 μm.

Fig. 3.7 – Tamis

Fig. 3.8 – Colonne de tamis et tamiseuse
3.7 Calciner

Le four à mufle (Fig. 3.10) permet de calciner le sédiment à très haute température (jusqu’à 2000°C). Le carbone organique (C_{org}) (produit par des organismes vivants et lié à d’autres éléments comme H, N ou P), le carbone inorganique (C_{inorg}) (associé à des composés inorganiques, CO_2, $CaCO_3$), les carbonates peuvent être indirectement mesurés, sous certaines conditions, à l’aide de ce type de four. Le sédiment calciné est ensuite pesé une fois refroidi dans un dessicateur. Pour rappel, le carbone organique est égal à la différence entre le carbone total et le carbone minéral.

3.8 Carbonate de Calcium

On utilise le calcimètre Bernard (Fig. 3.11) pour mesurer le taux de carbonate de calcium contenu dans le sédiment. À l’aide d’une attaque à l’acide
CHAPITRE 3. LE MATÉRIEL POUR LE TAMISAGE

chlorhydrique, on élimine la partie bioclastique du sédiment et on mesure de manière indirecte le taux de CaCO₃. Le calcimètre est composé d’une ampoule, d’un tube gradué de 100 cm³, d’un erlenmeyer de 100 cm³, d’un petit tube en verre deux fois plus court que l’erlenmeyer, deux deux bouchons à 1 trou adaptés au tube gradué et à l’erlenmeyer. Cette opération est délicate, aussi le port de gants spéciaux, d’une blouse en coton et de lunettes spéciales sont obligatoires.

Fig. 3.11 – Calcimètre Bernard
Chapitre 4

Analyses granulométriques

4.1 Traitement des échantillons

4.1.1 Choix de la fraction du sédiment à considérer

Les sédiments peuvent être de nature très variable. Certains se caractérisent notamment par une teneur élevée en carbonate de calcium \((Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3) \). Ce stock carbonaté est généralement de nature biogène et/ou phy-cogène. La présence dans un sédiment de débris coquilliers pose un problème. Certaines valeurs peuvent être faussées lorsque l’échantillon possède des bio-clastes de grande taille.

Il est parfois préférable de soumettre à l’analyse granulométrique uniquement la fraction insoluble du sédiment. L’élimination systématique des particules carbonatées par attaque préalable de l’échantillon à l’acide chlorhydrique \((H_3O^+ Cl^-) (10\%) \) offre l’avantage :

- pour la fraction grossière, de raisonner sur un stock de particules de densité plus homogène \((d = 2.65 \) dans le cas d’un sable quartzé),
- pour la fraction fine, d’aider à la dispersion de l’échantillon. En effet, les cations \(Ca^{2+} \ et \ Mg^{2+} \) présents dans les carbonates, peuvent entraîner une flocculation des colloïdes lors de l’analyse\(^1\).

Cependant, en prenant certaines précautions, il est possible de soumettre les échantillons prélevés à l’analyse granulométrique sans traitement préalable à l’acide chlorhydrique. On choisit alors de considérer l’échantillon dans sa totalité.

Fraction grossière

La prise en compte de l’ensemble du matériel peut être souhaitée car les particules bioclastiques enregistrent, au même titre que les particules insolubles, les processus dynamiques majeurs survenus lors du transport et du dépôt (usure, tri granulométrique). Dans certains cas, la fraction bioclastique du sédiment dépasse 95% du total (bancs coquilliers de la baie du Mont-Saint-Michel, de l’archipel de Chausey, fonds à maërl, à crépides...). Il reste que la déstruction

\(^1\) cas des tangues littorales
des carbonates est souhaitable pour l’obtention des résultats granulométriques dans les cas suivants :

- étude d’un sédiment originellement sans carbonate qui aura reçu ensuite un apport de carbonate,
- étude d’un sédiment dans lequel les carbonates seront recristallisés par diagenèse et n’auront donc plus les dimensions originales.

Dans ce cas, il est nécessaire de détruire les carbonates. Dans d’autres cas, comme celui des laves, des tangues on peut souhaiter établir la granulométrie du sédiment total, y compris des carbonates qui peuvent en être le constituant essentiel, et les granulométries établies avec ou sans carbonates peuvent être différentes [59].

On peut trouver des coquilles entières ou des bioclastes de grande taille non usés provenant d’espèces qui vivent dans le milieu étudié (rivière, lac, littoral). Dans ce cas, la mise en place de ce matériel grossier n’est pas contemporaine de celle du sédiment et biaise la granulométrie naturelle du dépôt. Il devra être éliminé de l’échantillon avant l’analyse proprement dite.

Les bioclastes, par leur densité et surtout par leur forme, s’éloignent des conditions théoriques requises pour l’application de la loi de Stockes (particules sphériques et de densité constante), principalement pour les dimensions supérieures à 0.2 mm. Même en ce qui concerne la fraction insoluble, ces conditions idéales sont souvent perturbées dans la nature par la présence soit de minéraux lourds (d > 3), soit de minéraux phylliteux (Biotite, Muscovite) dont le comportement hydrodynamique est sans commune mesure avec les particules quartzées.

Fraction fine (< 20 µm)

- l’utilisation du granulomètre par diffraction laser présente l’avantage de réduire considérablement le temps d’analyse. Ceci implique une diminution des risques de formation d’agrégats par flocculation, non négligeable dans le cas des mesures traditionnelles de sédimentation libre par pipette courte d’Andreasen où l’expérience se prolonge sur 8 jours,
- pour des dimensions aussi faibles, la vitesse de chute des particules quartzées et carbonatées est sensiblement identique et négligeable par rapport aux variations de densité à l’intérieur même des argiles (Kaolinite : 2.61; Illite : 2.1–2.7; Montmorillonite : 1.7–2.6).

4.1.2 Schéma de l’analyse granulométrique

L’analyse granulométrique des sédiments meubles a pour but de connaître la répartition quantitative pour chaque classe dimensionnelle des particules élémentaires constituant l’échantillon.

Sans difficulté majeure dans le cas de sables propres et homogènes, cette analyse nécessite une préparation spéciale lorsque les échantillons renferment une quantité non négligeable de matériel fin (silt et argile). Les documents suivants présentent le protocole standard en vigueur au Bureau de Recherche Géologique et Minière et un modèle de feuille de données (Tab. 4.1). Ce protocole peut être adapté, modifié ou simplifié en fonction de la nature des questions posées. Il n’est
CHAPITRE 4. ANALYSES GRANULOMÉTRIQUES

donné ici qu’à titre d’exemple. Les données peuvent être insérées indifféremment en ouverture AFNOR ou ϕ^2 à l’aide du tableau 4.2.

Tab. 4.1 - Feuille de données

<table>
<thead>
<tr>
<th>Module AFNOR</th>
<th>Tamis maille en μm</th>
<th>Passoire diamètre en mm</th>
<th>Description</th>
<th>Poids en g</th>
<th>%</th>
<th>% cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2500</td>
<td>3.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. $\frac{1}{2}\phi$ ou $\frac{1}{4}\phi$

31
Echantillon brut

- Lavage à l'eau (distillée)
- Séchage à l'étuve (50-60°C 24h)
- Séparation (Sép. Jones)

Prise 1
Echantillon témoin
- Fraction < 40 µm
 - Décantation - Siphonage
 - Séchage à l'air libre
 - Pesée
 - Traitement à H₂O₂ à chaud dans solution pH > 7 (Na OH N/l0)
 - Tamisage humide à 32 et 20 µm
 - Séchage et Pesée des 2 refus de tamis
 - Rincage par centrifugation

Prise 2
Tamisage humide à 40 µm
- Prise (5 à 6 g)
 - Attaque à HCl (N/l0)
 - Rincage par centrifugation
 - Agitation
 - Repos 100'
 - Prélèvements des 2 premiers cm
 - Centrifugation
 - Pâte sur lame rainurée
 - Diffractomètre X

Prise 3
Calcimétrie
- Fracision > 40 µm

- Séchage à l'étuve (60°C 24h)

- Prise (~100-200 g)

- Tamisage sur colonne AFNOR complétée

- Poids des refus de chaque tamis

- Traitements statistiques à partir des données brutes (refus et % déduits de la courbe)

Représentation graphique
- histogramme de fréquence pour chaque classe granulométrique
- courbe cumulative en ordonnées arithmétiques

Paramètres texturaux
- calcul des 4 paramètres principaux par la méthode des moments
- calcul des indices les plus couramment employés par la méthode des quartiles
TAB. 4.2 – Table d’équivalence entre les unités granulométriques

<table>
<thead>
<tr>
<th>Module AFNOR</th>
<th>Ouverture des tamis en mm</th>
<th>Ouverture des tamis en φ</th>
<th>Ouverture des tamis en Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>5</td>
<td>-2.32</td>
<td>5.70</td>
</tr>
<tr>
<td>37</td>
<td>4</td>
<td>-2.00</td>
<td>5.60</td>
</tr>
<tr>
<td>36</td>
<td>3.15</td>
<td>-1.66</td>
<td>5.50</td>
</tr>
<tr>
<td>35</td>
<td>2.50</td>
<td>-1.32</td>
<td>5.40</td>
</tr>
<tr>
<td>34</td>
<td>2.00</td>
<td>-1.00</td>
<td>5.30</td>
</tr>
<tr>
<td>33</td>
<td>1.60</td>
<td>-0.68</td>
<td>5.20</td>
</tr>
<tr>
<td>32</td>
<td>1.25</td>
<td>-0.32</td>
<td>5.10</td>
</tr>
<tr>
<td>31</td>
<td>1.00</td>
<td>0</td>
<td>5.00</td>
</tr>
<tr>
<td>30</td>
<td>0.80</td>
<td>0.32</td>
<td>4.90</td>
</tr>
<tr>
<td>29</td>
<td>0.63</td>
<td>0.66</td>
<td>4.80</td>
</tr>
<tr>
<td>28</td>
<td>0.50</td>
<td>1.00</td>
<td>4.70</td>
</tr>
<tr>
<td>27</td>
<td>0.40</td>
<td>1.32</td>
<td>4.60</td>
</tr>
<tr>
<td>26</td>
<td>0.315</td>
<td>1.66</td>
<td>4.50</td>
</tr>
<tr>
<td>25</td>
<td>0.250</td>
<td>2.00</td>
<td>4.40</td>
</tr>
<tr>
<td>24</td>
<td>0.200</td>
<td>2.32</td>
<td>4.30</td>
</tr>
<tr>
<td>23</td>
<td>0.160</td>
<td>2.66</td>
<td>4.20</td>
</tr>
<tr>
<td>22</td>
<td>0.125</td>
<td>3.00</td>
<td>4.10</td>
</tr>
<tr>
<td>21</td>
<td>0.100</td>
<td>3.32</td>
<td>4.00</td>
</tr>
<tr>
<td>20</td>
<td>0.080</td>
<td>3.64</td>
<td>3.90</td>
</tr>
<tr>
<td>19</td>
<td>0.063</td>
<td>3.98</td>
<td>3.80</td>
</tr>
<tr>
<td>18</td>
<td>0.050</td>
<td>4.32</td>
<td>3.70</td>
</tr>
<tr>
<td>17</td>
<td>0.040</td>
<td>4.64</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td>0.0315</td>
<td>4.98</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td>0.0250</td>
<td>5.32</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>0.0250</td>
<td>5.64</td>
<td>3.30</td>
</tr>
<tr>
<td></td>
<td>0.0160</td>
<td>5.96</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>0.0125</td>
<td>6.32</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>0.0100</td>
<td>6.64</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>0.0080</td>
<td>6.96</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>0.0063</td>
<td>7.30</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>0.0050</td>
<td>7.64</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>0.0040</td>
<td>7.96</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td>0.00315</td>
<td>8.30</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>0.00250</td>
<td>8.64</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td>0.00200</td>
<td>8.96</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>0.00160</td>
<td>9.28</td>
<td>2.20</td>
</tr>
<tr>
<td>limite inf.</td>
<td>0.00063</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

\[\phi = \log_2 \text{de l'inverse des dimensions des particules en mm}, \text{ soit}
\]

\[x_\phi = -\log_2 (x_{mm}) \Rightarrow -3.32193 \log_{10} (x_{mm}) \quad (4.1) \]
4.1.3 Techniques granulométriques

Les échantillons soumis à l’analyse granulométrique peuvent être traités à l’aide de plusieurs méthodes. Il est très importante de noter que les résultats...
le tamisage à sec sur une série de tamis de type AFNOR pour les dimensions comprises entre 40 µm et 25 mm. La durée du tamisage est limitée à 10 min afin de limiter le bris des bioclastes, nombreux dans certains échantillons. Certaines tamiseuses permettent des vibrations continues ou intermittentes. Le choix s’effectue en fonction de la nature des sédiments (agglomérats après séchage à l’étuve). En cas de doute, se reporter à la notice d’utilisation de la tamiseuse.

- le tamisage sous eau est recommandé pour séparer la fraction inférieure à 40 µm des particules les plus grossières ou au sein même de la fraction inférieure à 40 µm. On utilise alors deux tamis, l’un d’ouverture 32 µm, l’autre de 20 µm. Cette opération réduit l’hétérogénéité du matériel et facilite l’analyse micro-granulométrique.

- la diffraction laser est recommandée pour des sédiments dont la forme s’apparente à des particules sub-sphériques < 2 mm, opaques et de densité identique. Se reporter aux manuels d’utilisation des fabricants du granulomètre à diffraction laser pour plus de précision. Cette technique n’est donc pas valable pour tous les types de sédiments, ceux à forte composante bio-clastique par exemple. Il est aussi possible de soumettre une partie d’un échantillon au tamisage à sec et l’autre partie à la diffraction laser mais, dans ce cas, les résultats des analyses feront l’objet d’interprétations séparées [7], [20], [21], [34], [47], [52]. Toutefois, pour certains sédiments, les résultats issus de la diffraction laser sont comparables à ceux obtenus par tamisage [17].

- la sédimentométrie par sédigraphé à rayons X fournit le tracé de la courbe granulométrique pour la fraction inférieure à 20 µm voire 2 µm seulement, en mesurant la vitesse de chute par gravité des particules dans un liquide (en l’occurrence l’eau). La vitesse de chute est elle-même reliée à la dimension des particules d’après la loi de Stockes :

\[V = C \cdot r^2 \] soit \[r = \left(\frac{V}{C} \right)^{1/2} \] (4.2)

avec \(C = \frac{2}{9} \cdot \frac{\rho - \rho_o}{\eta} \cdot g \) = constante de Stockes et \(r \) le rayon des particules, \(\rho \) la densité des particules, \(\eta \) la viscosité du liquide, \(V \) la vitesse de chute des particules, \(\rho_o \) la densité du liquide et \(g \) l’accélération de la pesanteur.

L’emploi du sédigraphé est généralement réservé à l’étude des argiles. Il mesure par un mince faisceau de rayons X la concentration des particules qui restent en suspension à une hauteur de sédimentation diminuant avec le temps.

Signalons que pour les grains de très petites dimensions, la forme joue un rôle très important. Les particules d’argile se présentent sous la forme de plaquettes et ne sont donc pas sphériques. Le granulomètre laser à diffusion statique a pour principe l’interaction de la lumière avec les particules, celui à diffusion dynamique sur le mouvement brownien et la viscosité du mélange. Le sédigraphé a pour principe de base le frottement hydraulique. Ces méthodes ont des modes d’interaction différents avec les particules. Elles donnent donc des distributions différentes, pour les argiles notamment qui ne peuvent généralement pas être comparées entre elles.
4.2 Traitement des données

Le traitement graphique ou numérique des résultats bruts fournis par le tamisage a pour but de définir, par l’emploi de paramètres spécifiques (position, dispersion, asymétrie et acuité), l’échantillon étudié.

4.2.1 Méthode des percentiles

La courbe cumulative permet de mettre en évidence une première série de paramètres, de laquelle tous les autres découlent. Ce sont les percentiles Q_x, points correspondants à des mailles de tamis hypothétiques sur lesquelles $x\%$ en poids du sédiment est de dimension plus grande (ou plus petite). Les valeurs d’abscisse les plus fréquemment utilisées sont $1, 5, 16, 25, 50, 75, 84, 95, 99$.

Les paramètres de position

- la médiane ou Q_{50} est l’indice de position le plus fréquemment employé car il donne en intégrant toutes les classes granulométriques une estimation de la grossièreté moyenne du sédiment,
- le mode qui correspond à la dimension du tamis ou le refus est maximum,
- les quartiles Q_{25} et Q_{75} et percentiles $Q_1, Q_{16}, Q_{84}, Q_{95}, Q_{99}$, sont rarement utilisés seuls (sauf Q_{95} et Q_{99} pour le test de Passegia) mais associés, ils définissent des indices plus complexes.

Les paramètres de dispersion

Le plus ou moins bon classement d’un échantillon peut être connu en observant la pente de la courbe cumulative ou l’étalonnage de la courbe de fréquence. Des indices permettent de mesurer ce classement.

- l’indice de Trask ou Sorting-Index S_0. De loin le plus employé, il correspond par définition à:

$$S_0(mm) = \sqrt{\frac{Q_{25}(mm)}{Q_{75}(mm)}} \quad (4.3)$$

le classement est d’autant plus mauvais que les valeurs du S_0 sont élevées et parfait pour la valeur 1.

<table>
<thead>
<tr>
<th>S_0</th>
<th>Classement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 à 1.17</td>
<td>Très bien classé</td>
</tr>
<tr>
<td>1.17 à 1.20</td>
<td>Bien classé</td>
</tr>
<tr>
<td>1.20 à 1.35</td>
<td>Assez bien classé</td>
</tr>
<tr>
<td>1.35 à 1.87</td>
<td>Moyennement classé</td>
</tr>
<tr>
<td>1.87 à 2.75</td>
<td>Mal classé</td>
</tr>
<tr>
<td>> 2.75</td>
<td>Très mal classé</td>
</tr>
</tbody>
</table>

- l’indice $Qd\phi$ de Krumbein. Les quartiles sont alors exprimés en unités ϕ.

$$Qd\phi = \frac{Q_{25}\phi - Q_{75}\phi}{2} \quad (4.4)$$
On a un classement parfait pour une valeur nulle de $Q_{d\phi}$ et une hétérométrie croissante avec les valeurs croissantes de $Q_{d\phi}$. La relation mathématique qui relie les deux paramètres précédents est :

$$Q_{d\phi} = \log_{10} S_0 \quad (4.5)$$

- l’indice de dispersion de Folk et Ward. Contrairement aux autres indices, celui-ci fait intervenir les extrémités de la courbe dans la définition du classement (Fig. 4.2).

$$D_{FW\phi} = \frac{Q_{84\phi} - Q_{16\phi}}{4} + \frac{Q_{95\phi} - Q_{5\phi}}{6.6} \quad (4.6)$$

- l’indice de dispersion de Otto et Inman.

$$D = \frac{Q_{84\phi} + Q_{16\phi}}{2} \quad (4.7)$$

- l’indice de dispersion de McCammon.

$$D = \frac{1}{5.4} \left[(\phi_{85} - \phi_{15}) + (\phi_{95} - \phi_{5}) \right] \quad (4.8)$$

- l’indice de dispersion de Cailleux. Il est défini par l’espace inter-quartile qui montre la plus forte pente pour la courbe cumulative.

$$H_{e} = Q_{50} - Q_{75} \text{ ou } H_{e} = Q_{25} - Q_{50} \quad (4.9)$$

Les faibles valeurs indiquent une faible hétérométrie.

- l’indice d’hétérométrie H_{q} de Pomerol. Exprimé en unité α ($\alpha = 3\phi$), il est défini comme :

$$H_{q} = \frac{Q_{25\alpha} - Q_{75\alpha}}{2} \quad (4.10)$$

Équivalent à l’indice de Krumbein, on a $H_{q} \alpha = 3Q_{d\phi}$. Il peut être utile de rappeler que les coefficients de classement peuvent varier avec la texture des matériaux ; pour un même stade d’évolution les sables fins et très fins sont généralement mieux classés que les sables moyens et grossiers.

- le grain moyen M_{G} de Folk et Ward.

$$M_{G} = \exp \frac{\ln P_{16} + \ln P_{50} + \ln P_{84}}{3} \quad (4.11)$$
Les paramètres d’asymétrie

Outre les paramètres de position et de dispersion, les paramètres d’asymétrie, mesurant l’allure de la distribution de part et d’autre de la médiane, sont nécessaires à la bonne définition d’une courbe granulométrique. Là encore, plu-
sieurs indices ont été proposés.

- l’indice d’asymétrie de Trask est défini par :

$$ast = \frac{Q_{25(mm)} \times Q_{75(mm)}}{Q_{50(mm)}}$$ \hspace{1cm} (4.12)

- l’indice d’asymétrie de Inman (partie centrale).

$$a_\phi = \frac{(\phi_{16} + \phi_{84} - 2\phi_{50})}{(\phi_{84} - \phi_{16})}$$ \hspace{1cm} (4.13)

- l’indice d’asymétrie de Inman (extrémités).

$$a(2\phi) = \frac{(\phi_5 + \phi_{95} - 2\phi_{50})}{(\phi_{84} - \phi_{16})}$$ \hspace{1cm} (4.14)

Les valeurs négatives correspondent à une dominante des sédiments fins, les valeurs à une dominante des sédiments grossiers.

- l’indice d’asymétrie de Krumbein. Il est exprimé en ϕ.

$$SK_\sigma = \frac{Q_{25\phi} + Q_{75\phi} - 2Q_{50\phi}}{2}$$ \hspace{1cm} (4.15)

Sur l’histogramme de fréquence, trois cas de figure peuvent se présenter selon les valeurs de cet indice (Fig. 4.3).

Fig. 4.3 – Indice d’asymétrie et forme de la courbe de fréquence

1. $SK = 0$ (ou $ast = 1$), le mode coïncide avec la médiane et la moyenne, les fractions fines et grossières sont classées symétriquement par rapport à la médiane.

2. $SK > 0$ (ou $ast < 1$), la fraction grossière est plus importante donc mieux classée que la fraction fine. La médiane et le mode se situent à gauche de la moyenne.

3. $SK < 0$ (ou $ast > 1$), la fraction fine est mieux classée que la fraction grossière. La médiane et le mode sont cette fois à droite de la moyenne.
La valeur intermédiaire de 0.3 est souvent utilisée pour le skewness. A titre d'exemple,
\(-0.1 < SK < -0.3 = \) finely skewed ou
\(-0.1 < SK < -0.3 = \) very finely skewed. Les SK compris entre -0.1 et 0.1 caractérisent des
distributions dites symétriques.

- l’indice d’asymétrie de Pomerol. Identique à l’indice précédent, il est seule-
ment exprimé en unité \(\alpha \).

\[Asq_\alpha = \frac{Q_{75\alpha} + Q_{25\alpha} - 2Q_{50\alpha}}{2} \]
(4.16)

On retrouve l’équivalence \(Asq_\alpha = 3SK_\phi \)

Les paramètres d’acuité

- l’indice d’acuité (ou Kurtosis) de Inman. Il est défini par :

\[K = \left(\frac{Q_{95\alpha} - Q_{5\alpha}}{\sigma_\phi} \right) - \sigma_\phi \]
(4.17)

\(\sigma_\phi = \) écart-type en unité \(\phi \). La valeur de \(K \) varie autour de 1; ainsi si
\(0.90 < K < 1.11 \), la courbe est dite mésokurtique; elle est platykurtique
si \(0.67 < K < 0.90 \) et leptokurtique si \(1.11 < K < 1.50 \) (Fig. 4.4).

Fig. 4.4 – Paramètres d’acuité et forme de la courbe de fréquence

- l’indice d’acuité (ou Kurtosis) de Krumbein et Petitjohn.

\[K = \frac{Q_{75\text{(mm)}} - Q_{25\text{(mm)}}}{2 (Q_{90\text{(mm)}} - Q_{10\text{(mm)}})} \]
(4.18)

- l’indice d’acuité (ou Kurtosis) de Folk et Ward.

\[Kg = \frac{Q_{95\phi} - Q_{5\phi}}{2.44 (Q_{75\phi} - Q_{25\phi})} \]
(4.19)

4.2.2 Méthode des moments statistiques

Principe de la méthode

En considérant l’ensemble des refus de tamis comme une série statistique, on peut définir pour chaque distribution granulométrique des indices et paramètres purement mathématiques en utilisant la méthode des moments statistiques [8].
Sachant que dans une série statistique, le moment d'ordre \(q \) par rapport à une valeur \(x \) est la moyenne arithmétique des puissances \(q \)èmes des déviations \((x - x_0) \) des valeurs de \(x \) par rapport à \(x_0 \), le calcul des moments d'ordre 1, 2, 3 et 4 suffit à définir les paramètres principaux : respectivement, la moyenne ou diamètre moyen, l'écart-type ou déviation standard, l'asymétrie ou Skewness et l'acuité ou Kurtosis.

Le calcul de ces données est le suivant : le moment d'ordre 1 \((a_1) \) moyenne arithmétique des déviations par rapport à \(x_0 \), représentant la déviation de la moyenne arithmétique par rapport à \(x_0 \), on choisit comme valeur de \(x_0 \), une valeur assez voisine de la moyenne, par exemple celle du tamis sur lequel le refus est maximum ; on obtient alors la position du diamètre moyen par rapport à ce tamis. Enfin, on devra recentrer la moyenne ainsi calculée de \(\frac{1}{2} \) tamis vers les valeurs plus faibles, l'histogramme étant construit en considérant les refus de tamis.

Le calcul des moments d'ordre 1, 2, 3 et 4 \((a_1, a_2, a_3, a_4) \) par rapport à cette valeur \(x_0 \) permet de déduire les moments dits apparents \((m_1, m_2, m_3, m_4) \) centrés cette fois, non plus sur \(x_0 \) mais sur la moyenne arithmétique.

\[
m_1 = a_1 \quad (4.20)
\]
\[
m_2 = a_1 - a_1^2 \quad (4.21)
\]
\[
m_3 = a_3 - 3a_2a_1 + a_1^3 \quad (4.22)
\]
\[
m_4 = a_4 - 4a_1a_3 + 6a_2^2a_2 - 3a_1^4 \quad (4.23)
\]

Connaissant la valeur de ce moment apparent, on obtient alors :

\[
d_m = m_1 \quad (4.24)
\]
\[
\text{écart-type} \quad \sigma = (m_2)^{1/2} \quad (4.25)
\]
\[
\text{asymétrie} \quad Sk = \frac{m_3}{(m_2)^{3/2}} \quad (4.26)
\]
\[
\text{acuité} \quad K = \frac{m_4}{(m_2)^2} \quad (4.27)
\]

Indices globaux

Il faut utiliser les dimensions équivalentes et les ordonnées réduites.

1. Moyenne (degré de grossièreté du sédiment)

\[
\bar{x} = \frac{1}{100} \int_0^{100} x \, dy \quad (4.28)
\]

2. Écart arithmétique moyen

\[
Eam = \frac{1}{100} \int_0^{100} |x - \bar{x}| \, dy \quad (4.29)
\]

Surfaces comprises entre la courbe et la parallèle à l’axe des ordonnées d’abscisse \(x = \bar{x} \). C’est la dispersion du sédiment autour de sa moyenne.
3. Écart logarithmique moyen

\[Elgm = \bar{x} - \frac{x_{100} + x_0}{2} \quad (4.30) \]

Sommes algébriques des surfaces comprises entre la courbe cumulative et la droite passant par \(x = 0.8, y = 0 \) et \(x_{100}, y = 100 \). La courbe cumulative est exprimée sous la forme générale \(y = ax^N + b \), \(N \) étant l’indice d’évolution. On peut déterminer les constantes \(a \) et \(b \) en appelant \(\mathcal{G} \) l’abscisse \(x_{100} - 0.8 \) et en utilisant les abscisses réduites \(x_n = x - 0.8, y_n = 100 \left(\frac{10^N x_n - 1}{10^N \mathcal{G} - 1} \right) \) avec \(x_n = x - 0.8 \) (diamètre en \(1/100 \mu m \)) et \(\mathcal{G} = x_{100} - 0.8 \).

4. Méthodes permettant de déterminer \(N \)

- courbes canoniques 1952,
- coordonnées bilogarithmiques. La pente des segments de droites obtenus en traçant la courbe dans ce nouveau système de coordonnées,
- méthode Vernhet-Rivière (abaque) \(x = N \mathcal{G}, y = 20 \log \left(\frac{x_{mm} - 0.8}{x_{mm} - 0.8} - 1 \right) \).

<table>
<thead>
<tr>
<th>Indices</th>
<th>Concavité</th>
<th>Courbe</th>
<th>Grano-faciès</th>
<th>Mode de dépôt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>(n = N - 1)</td>
<td>Accentuation</td>
<td>Sens</td>
<td></td>
</tr>
<tr>
<td>(> 1)</td>
<td>(\geq 0)</td>
<td>très forte</td>
<td>↗</td>
<td>supra-parabolique</td>
</tr>
<tr>
<td>(= 1)</td>
<td>(= 0)</td>
<td>forte</td>
<td>↗</td>
<td>linéaire</td>
</tr>
<tr>
<td>(0 < N < 1)</td>
<td>(-1 < n < 0)</td>
<td>variable</td>
<td>↗</td>
<td>parabolique</td>
</tr>
<tr>
<td>(= 0)</td>
<td>(= -1)</td>
<td>mâle</td>
<td>=</td>
<td>logarithmique</td>
</tr>
<tr>
<td>(< 0)</td>
<td>(< -1)</td>
<td>variable</td>
<td>↘</td>
<td>hyperbolique</td>
</tr>
<tr>
<td>(< -1)</td>
<td>(< -2)</td>
<td>forte</td>
<td>↘</td>
<td>infrahyperbolique</td>
</tr>
</tbody>
</table>

Interprétation de \(N \)

- les sédiments à faciès hyperbolique se situent dans les zones les plus calmes où toute particule apportée par l’eau est définitivement bloquée. Il s’agit d’un faciès de décantation. Le grain moyen est toujours fin (\(< 0.80 \mu m \)). La fin de la distribution vers les fines se traduit par une limite très tranchée aux environs de \(0.02 \mu m \). L’absence de particules de taille \(< 0.02 \mu m \) oppose le faciès hyperbolique à tout autre faciès.
- les sédiments à faciès logarithmique sont représentés par des courbes rectilignes sur une grande partie centrale ou en forme de S très aplati (la partie moyenne à la dimension des limons (5 – 10 \(\mu m \))). Les courbes s’incurvent vers les grossières en un crochet à faciès hyperbolique et vers les fines en un crochet à faciès parabolique. Les sédiments à faciès logarithmique peuvent contenir un pourcentage élevé de particules \(< 0.063 \mu m \). Les particules fines sont généralement plus abondantes que dans le faciès hyperbolique.
- le faciès logarithmique est un faciès de transport évolué, c’est-à-dire dans lequel un équilibre s’est réalisé entre les compositions granulométriques.

- le faciès parabolique est représenté par une courbe arquée, à concavité vers le haut, terminée vers les grossières par un crochet à concavité vers le bas. Les sédiments à faciès parabolique correspondent à des conditions de dépôt dans un courant relativement rapide. Le faciès parabolique est un faciès de transport qui apparaît au début de l’évolution fluviale des sédiments. La charge solide de l’eau n’est pas encore adaptée au courant transporteur. Les particules grossières sont en excès dans la suspension et se déposent en plus grande abondance (Fig. 4.5).

![Diagramme des faciès de la granulométrie](image.png)

Fig. 4.5 – Faciès parabolique, logarithmique, hyperbolique et composite

Programme de calcul

Au niveau du traitement informatique proprement dit, le calcul de ces paramètres se décompose ainsi (l’échelle utilisée étant l’unité ϕ).

1. Calcul de la somme des refus

\[
N = \sum_{i=1}^{k} p_i \tag{4.31}
\]
CHAPITRE 4. ANALYSES GRANULOMÉTRIQUES

p est le poids de chaque refus de tamis et i le nombre de tamis.

2. Calcul de fréquences

\[n_i = \frac{p_i}{N} \] \hspace{1cm} (4.32)

3. Recherche de l’ouverture t_j du tamis donnant un refus maximum.

4. Calcul des coefficients de moments $c_i = x_i - t_j$ avec x_i étant le diamètre d’ouverture des tamis (en unité ϕ).

5. Calcul des moments pour $q = 1, 2, 3$ et 4

\[a_q = \sum_{i=1}^{k} c_i q n_i \] \hspace{1cm} (4.33)

6. Calcul des moments apparents

\[m_2 = a_2 - a_1^2 \] \hspace{1cm} (4.34)

\[m_3 = a_3 - a_1 (3m_2 + a_1^2) \] \hspace{1cm} (4.35)

\[m_4 = a_4 - 2a_1 (m_3 + a_3 - a_1) \] \hspace{1cm} (4.36)

7. Calcul du diamètre moyen (unité ϕ) avec R, l’écart entre 2 tamis consécutifs (unité)

\[d_m = a_1 + \left(t_j - \frac{R}{2} \right) \] \hspace{1cm} (4.37)

8. Calcul de l’écart-type (unité ϕ)

\[\sigma = m_2^{1/2} \] \hspace{1cm} (4.38)

9. Calcul de l’asymétrie

\[Sk = \frac{m_3}{\sigma^3} \] \hspace{1cm} (4.39)

10. Calcul de l’angulosité

\[K = \frac{m_4}{\sigma^4} \] \hspace{1cm} (4.40)

Limites d’utilisation

En toute rigueur, l’utilisation de cette méthode statistique nécessite la connaissance de la distribution granulométrique d’un échantillon dans sa totalité, c’est-à-dire entre 0 et 100%. Cette condition, surtout dans le cas des sédiments argileux, étant rarement réalisée, le pourcentage de la fraction résiduelle (diamètre inférieur à $50 \, \mu m$ ou $2 \, \mu m$ selon le diagramme utilisé) se trouve centré sur une seule classe (respectivement $31.5 \, \mu m$ ou $1.25 \, \mu m$), de ce fait, les valeurs des moments ne sont plus représentatives de l’ensemble de l’échantillon. Ainsi, chaque fois que cette fraction résiduelle restera inférieure à 5 %, les valeurs fournies par la méthode des moments pourront être retenues et comparées entre elles. Par contre, dans les autres cas, les indices issus de la méthode des percentiles, lorsqu’ils pourront être calculés, seront pris en compte. Blott et Pye ont proposé
une macro fonctionnant sous Microsoft Excel© [8] [9] qui calcule les indices issus de la méthodes des moments3.

4.2.3 Représentation graphique

Représentation traditionnelle

Celle-ci consiste à reporter en abscisse sur une échelle logarithmique la dimension des grains et des particules correspondant aux ouvertures des mailles de tamis du type AFNOR, c'est-à-dire selon une progression géométrique d'ordre $10^{1/10} = 1.2589$. En ordonnées, les pourcentages cumulés des particules de taille supérieure à la dimension données sur l'axe des abscisses, sont portés sur une échelle arithmétique. Ce type de représentation couplé au tracé de l'histogramme de fréquence pour chaque classe granulométrique est celui le plus fréquemment utilisé (Fig. 4.6).

![Fig. 4.6 - Représentation classique d'une analyse granulométrique](image)

Les auteurs anglo-saxons emploient fréquemment sur l’axe des abscisses, une échelle particulière (ϕ) qui correspond aux logarithmes de base 2 de l’inverse des dimensions de particules exprimées en mm soit $x_\phi = -\log_2 x_{mm} = -3.32193\log_{10} x_{mm}$. En choisissant arbitrairement un diamètre de particule de 1 mm pour la valeur 0 ϕ, l’unité ϕ est telle qu’une valeur est toujours le double de celle immédiatement plus petite. Certains paramètres texturaux, calculés par la méthode des percentiles ou des moments statistiques, sont exprimés avec cette unité (Tab. 4.2).

Méthode des indices d’évolution

L’utilisation de la méthode Rivière, précise et originale, nécessite l’emploi d’une échelle logarithmique spéciale sur l’axe des abscisses. On recommande de prendre comme échelle des abscisses, les logarithmes décimaux (base 10) ou échelle Δ. De plus, l’unité dimensionnelle étant fixée au 1/100 de μm on a :

\[3.\text{disponible à l’adresse suivante http://www.kpal.co.uk/gradistat.html}\]
Les pourcentages pondéraux cumulatifs sont exprimés en ordonnées sur une échelle arithmétique.

Lorsque l’échantillon soumis à l’analyse granulométrique comporte une fraction non négligeable (supérieure à 10%) de lutite (diamètre inférieur à 50 µm), parallèlement au tamisage des arénites (de 50 µm à 2 mm) et des rudites (supérieures à 2 mm), l’emploi du sédigraphé ou du granulomètre à diffusion laser permet de connaître la courbe granulométrique de cette fraction (inférieure à 20 µm).

Cependant l’analyse de cette fraction (possible aussi par le moyen de la pipette courte d’Andreasen) fournit, à partir de la vitesse limite de chute, des informations sur les dimensions équivalentes des particules de la suspension. Ces dimensions équivalentes sont des dimensions fictives qui correspondent au diamètre de particules de quartz, sphériques, ayant la même vitesse de chute; elles sont donc sans commune mesure avec les dimensions réelles des particules. La courbe tracée par le sédigraphé ou le granulomètre à diffusion laser est exprimée directement en dimensions équivalentes par application de la formule de Stockes aux vitesses limites de chute.

La courbe tracée par le sédigraphé ou le granulomètre à diffusion laser est exprimée directement en dimensions équivalentes par application de la formule de Stockes aux vitesses limites de chute.

En revanche, la technique de tamisage sur la fraction grossière du sédiment (diamètre supérieur à 50 µm ou à 10 µm dans le cas du tamisage sous eau) donne des valeurs correspondant à la dimension réelle des grains. Il est cependant nécessaire de corriger cette valeur, en exprimant la taille des grains au moyen de leur diamètre nominal (x_n) qui correspond à $x_n = 1.15x_v$, où x_v est le vide de tamis. Rivière insiste sur l’importance de cette notion de diamètre nominal car le comportement hydraulique des grains d’un diamètre nominal donné est pratiquement équivalent à celui d’une sphère de même diamètre et bien entendu de même rugosité et densité.

Jusqu’à la valeur 90 µm, la vitesse limite de chute des grains peut être calculées directement en fonction du diamètre nominal par la loi de Stockes. Néanmoins, pour des diamètres supérieurs à 90 µm, la loi de Stockes devient inutilisable ; Rivière recommande alors l’utilisation des formules de Berthois-Gendre pour calculer les vitesses limites de chute à 20°C, ce qui donne.

\[
x_n \leq 0.009\, \text{cm} \quad W = 5403(2.65 - 1)x_n^2
\]
\[
0.009 \leq x_n \leq 0.052 \quad W = 334x_n^{1.309}
\]
\[
0.052 \leq x_n \leq 0.152 \quad W = 67.795x_n^{0.76103}
\]
\[
0.152 \leq x_n \leq 2.043 \quad W = 43.33x_n^{0.52819}
\]

$x_n = \text{diamètre nominal (cm)} \quad W = \text{vitesse limite de chute (cm/s)} \quad (4.46)$

Pour exprimer les dimensions de la fraction granulométrique soumis au tamisage, en dimensions équivalentes, il reste alors à appliquer la formule de Stockes aux vitesses limites de chute calculées précédemment. On obtient alors :

\[
x_n \leq 0.009\, \text{cm} \quad X = X_v + 0.0607
\]
\[
0.009 \leq x_n \leq 0.052 \quad X = 0.6545X_v + 1.3993
\]
\[
0.052 \leq x_n \leq 0.152 \quad X = 0.38051X_v + 2.6803
\]

(4.47) (4.48) (4.49)
Tab. 4.4 - Conversion des diamètres expérimentaux (vide de maille) en diamètres de Stokes-Berthois (Rivière et Vernhet, 1973)

<table>
<thead>
<tr>
<th>Diamètre expérimental (µm)</th>
<th>30</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
<th>5000</th>
<th>10000</th>
<th>20000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamètre de Stokes-Berthois (µm)</td>
<td>35</td>
<td>57</td>
<td>108</td>
<td>170</td>
<td>290</td>
<td>380</td>
<td>590</td>
<td>720</td>
<td>860</td>
</tr>
</tbody>
</table>

Fig. 4.7 - Vitesse de chute en fonction du diamètre pour des sphères de quartz dans l'eau à 20 °C

\[0.152 \leq x_n \leq 2.043 \quad X = 0.2641X_v + 3.2746 \] \hspace{1cm} (4.50)

avec \(X \) = diamètre équivalent, échelle \(\Delta \) et \(X_v \) = diamètre du vide de maille, échelle \(\Delta \).

En résumé, l'expression numérique des particules tamisées, en dimensions équivalentes, nécessite les opérations suivantes :

1. Calcul des diamètres nominaux \(x_n \).
2. Calcul des vitesses limites de chute \(W \) (formules Berthois-Gendre)

4.2.4 Méthode des indices granulométriques

En 1952, Rivière a élaboré une méthode permettant d'exprimer toute courbe granulométrique par une équation mathématique de type \(y = ax^N + b \). Depuis cette date, plusieurs méthodes de calcul visant à définir \(N \) ont été proposées et la signification dynamique de ce paramètre a pu être précisée, principalement à travers les travaux du laboratoire de sédimentologie d'Orsay.

Il est apparu très tôt que cette valeur \(N \), quantifiant la concavité ou convexité de la forme générale de la courbe granulométrique, reflète avec précision le niveau énergétique régissant lors du transport et du dépôt d'un sédiment.
Fig. 4.8 – Diagramme de Hjulström. Relation entre la taille du grain, la vitesse de flux et le type de mouvement sédimentaire (densité du sédiment : 2.65g/cm^{-5})

La méthode d’évolution de N nécessite la connaissance successive des paramètres \bar{x} (moyenne), G (indice de classement), v (paramètre permettant de déterminer NG). Cette méthode graphique et numérique se compose comme suit :

1. Tracé de la courbe granulométrique entière, exprimée en dimensions équivalentes (correction au moyen du tableau 4.4 des dimensions réelles en dimensions équivalentes pour la fraction grossière analysées par le tamisage.
2. Délimitation du domaine de la courbe à intégrer (limite $< 0.063 \text{µm}$, soit 0.8Δ (module) pour l’abscisse ; limite inférieure y_{inf} (pourcentage cumulé correspondant à 0.063µm, et limite supérieure y_{99} (pourcentage cumulé correspondant à 99% pour l’ordonnée,
3. Intégration de la surface S (cm2),
4. Mesure de $y_{cm} = y_{99} - y_{inf}$,
5. Calcul de $x_{cm} = \frac{S}{y}$,
6. Transformation de x_{cm} en $\bar{x}r$ (moyenne réduite).
 \[\bar{x} = \frac{\bar{x}r}{4} \text{ en } \Delta \] (4.51)
7. Calcul de \bar{x} (moyenne).
CHAPITRE 4. ANALYSES GRANULOMÉTRIQUES

Tab. 4.5 – *EQUIVALENCES MAILLES TAMIS AFNOR ET XΔ*

<table>
<thead>
<tr>
<th>Mailles en mm ((\sqrt[10]{10}))</th>
<th>XΔ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4.754</td>
</tr>
<tr>
<td>2.5</td>
<td>4.674</td>
</tr>
<tr>
<td>1.6</td>
<td>4.649</td>
</tr>
<tr>
<td>1.25</td>
<td>4.620</td>
</tr>
<tr>
<td>1</td>
<td>4.583</td>
</tr>
<tr>
<td>0.8</td>
<td>4.546</td>
</tr>
<tr>
<td>0.63</td>
<td>4.506</td>
</tr>
<tr>
<td>0.5</td>
<td>4.468</td>
</tr>
<tr>
<td>0.4</td>
<td>4.411</td>
</tr>
<tr>
<td>0.315</td>
<td>4.343</td>
</tr>
<tr>
<td>0.25</td>
<td>4.278</td>
</tr>
<tr>
<td>0.2</td>
<td>4.214</td>
</tr>
<tr>
<td>0.16</td>
<td>4.151</td>
</tr>
<tr>
<td>0.125</td>
<td>4.081</td>
</tr>
<tr>
<td>0.1</td>
<td>4.017</td>
</tr>
<tr>
<td>0.08</td>
<td>3.954</td>
</tr>
<tr>
<td>0.063</td>
<td>3.860</td>
</tr>
<tr>
<td>0.05</td>
<td>3.760</td>
</tr>
<tr>
<td>0.04</td>
<td>3.663</td>
</tr>
</tbody>
</table>

\[\bar{x} = \bar{x}_r + 0.8 \text{ en } \Delta \left(\log \frac{6.3}{100} = 0.8 \Delta \right) \] \(4.52\)

8. Mesure de \(\mathcal{G}\) en \(\Delta\).

\[\mathcal{G} = (x_{99} - 0.8) \text{ en } \Delta \] \(4.53\)

9. Mesure de \(v\).

\[v = 20 \log \left(\frac{\mathcal{G}}{\bar{x}_r} - 1 \right) \] \(4.54\)

10. Détermination graphique de \(N\mathcal{G}\) à partir de l’abaque de Rivière (1977).

11. Calcul de \(\mathcal{N}\)

\[\mathcal{N} = \frac{N\mathcal{G}}{\mathcal{G}} \] \(4.55\)

12. Représentation graphique sur un diagramme \(\bar{x} - -\mathcal{N}\)

Fonction paramétrique \(x = N\mathcal{G}\) et \(y = 20 \log \left(\frac{x_{100} - 0.8}{\bar{x} - 0.8} - 1 \right)\)

4.2.5 Traitement d’image

La caractérisation d’un sédiment et des particules (clastes) qui le constituent repose en grande partie sur l’analyse quantitative de leur forme, dite analyse

1 Préparation de l’échantillon et acquisition de l’image,
2 Calibration de l’image, filtres et organisation des métadonnées,
3 Techniques de mesures et estimation des erreurs. Les programmes visent à mesurer automatiquement et rapidement le plus de paramètres possibles (métriques).
Chapitre 5

Autres analyses classiques

5.1 Forme des grains

Les formules permettant le calcul des principaux paramètres de forme des grains sont fournies ci-dessous.

5.1.1 Sphéricité

Les indices bi-dimensionnels de sphéricité sont donnés par Wadell (1935).

\[\varphi_w = \frac{d_c}{D_c} \] \hspace{1cm} (5.1)

et Riley (1941).

\[\varphi_r = \left(\frac{D_i}{D_c} \right)^{1/2} \] \hspace{1cm} (5.2)

avec \(d_c \) le diamètre de la section nominale (diamètre d’un cercle d’une aire égale à la projection de la particule), \(D_c \) le diamètre du plus petit cercle circonscrivant, \(D_i \) le diamètre du cercle inscrit. Ces indices sont basés sur les mesures de la section maximale transversale de l’aire.

Les indices tri-dimensionnels de sphéricité sont donnés par Krumbein (1941).

\[\psi_i = \left(\frac{BC}{A^2} \right)^{1/3} \] \hspace{1cm} (5.3)

\[\psi_k = \left\{ \left(\frac{B}{A} \right)^2 \frac{C}{B} \right\}^{1/3} \] \hspace{1cm} (5.4)

et par Sneed et Folk (1958).

\[\varphi_p = \left(\frac{C^2}{AB} \right)^{1/2} \] \hspace{1cm} (5.5)

où \(A \) est la longueur du grand axe, \(B \) la longueur de l’axe médian et \(C \) la longueur du petit axe.
5.1.2 Aplatissement

L’indice d’émoussé est donné par Wentworth (1919).

\[F_{w1} = \frac{(A + B)}{2C} \] (5.6)

Les indices d’aplatissements sont donnés par Wentworth (1919).

\[F_{w2} = \frac{(A + B + C)}{3} \] (5.7)

et Cailleux (1947).

\[F_c = \frac{(A + B)}{2C} \times 100 \] (5.8)

où \(A \) est la longueur du grand axe, \(B \) la longueur de l’axe médian et \(C \) la longueur du petit axe.

5.1.3 Allongement

Un indice bi-dimensionnel a été fourni par Dapples et Rominger (1945).

\[E_p = \frac{W_p}{L_p} \] (5.9)

et un indice tri-dimensionnel par Scheiderhohn (1954).

\[E_s = \frac{B}{A} \] (5.10)

avec \(W_p \) la largeur de la projection de la particule, \(L_p \) la longueur de la projection de la particule, \(A \) la longueur du grand axe et \(B \) la longueur de l’axe médian.

5.1.4 Rondeur

Ces indices sont donnés par Wentworth (1933).

\[P_s = \frac{r_s}{D} \] (5.11)

Cailleux (1947).

\[P_l = \frac{2r_s}{A} \] (5.12)

Wadell (1933) :

\[P_d = \frac{\sum \bar{r}}{N} \] (5.13)

et Ouma (1967) :

\[X = \frac{3\bar{r}}{(A + B + C)} \] (5.14)

avec \(r_s \) le rayon du plus petit angle, \(r \) le rayon de chaque angle, \(\bar{r} \) le rayon moyen de chaque angle, \(R \) le rayon du plus grand cercle circonscrit, \(D \) le rayon
du grain moyen \(= (A + B)/4\) avec \(A\) la longueur du grand axe et \(B\) la longueur de l’axe médian, \(N\) le nombre d’angle de la particule (les mesures de Wadell et d’Ouma imposent la mesure de tous les angles).

5.1.5 Divers

L’indice de forme de Fleming (1965).

\[
\text{diamètre nominal vrai ou approché:} D_v = (ABC)^{1/3} \tag{5.15}
\]

Celui de Folk (1974).

\[
\text{volume,} \ V = \left(\frac{\pi}{6}\right) ABC \tag{5.16}
\]
\[
\text{aire de projection maximale,} \ MPA = \left(\frac{\pi}{4}\right) AB \tag{5.17}
\]

de Rivière et Ville (1967).

\[
\text{indice morphologique,} \ K = \frac{1}{3} \left(\frac{A}{C} + \frac{2r}{C} + \frac{B}{C}\right) \tag{5.18}
\]

avec \(A\) la longueur du grand axe, \(B\) la longueur de l’axe médian et \(C\) la longueur du petit axe et \(r\) la rayon du plus petit angle. Il est aussi possible de caractériser visuellement l’émoussé d’un grain (Fig. 5.1).

\[\text{Fig. 5.1 – Caractérisation visuelle du degré d’émoussé des grains de sable}\]
Diagramme de Zingg (1935).

Fig. 5.2 – Diagramme de Zingg dans lequel chaque point représente un caillou (Germain et Filion, 2002. Géographie physique et quaternaire, 56(1):81-95)

Fig. 5.3 – Diagramme de Zingg. L: longueur (axe a), l: largeur (axe b), S: épaisseur (axe c) [Traduction: flach: disque; kugelig: sphère; stengelig: tige; flachstengelig: lame]
Diagramme de Sneed et Folk (1958).

Fig. 5.4 – Diagramme de Sneed et Folk. 10 classes: C (compact), CP (compact-platy), CB (compact-bladed), CE (compact-elongate), P (platy), B (bladed), E (elongate), VP (very platy), VB (very bladed), VE (very elongate).

Relation entre l’indice de sphéricité et celui d’aplatissement.

Fig. 5.5 – Relation entre l’indice de sphéricité et celui d’aplatissement. Chaque point représente un site d’échantillonnage (moyenne de éléments) (Germain et Filion, 2002. Géographie physique et quaternaire, 56(1):81-95)
5.2 Calcimétrie

Une calcimétrie consiste à déterminer le volume de CO\(_2\) dégagé par l'action de l'acide chlorhydrique (HCl) sur le carbonate de calcium (CaCO\(_3\)) d'un échantillon (Fig. 5.6). En toute rigueur, les conditions de température et de pression atmosphériques de la pièce où est effectuée l'analyse doivent être connues et contrôlées.

5.2.1 Préparation de l'échantillon

1. Verser à mi-hauteur de l'ampoule une solution saturée de chlorure de sodium (NaCl) (1/4 l environ),
2. Tarer la balance et peser l'échantillon,
3. Vérifier que le poids de l'échantillon ne dépasse pas 0.4 g,
4. Placer l'échantillon dans l'érlemeyer,
5. Placer le petit tube dans l'érlemeyer (le tube doit être droit, le coller si besoin)
6. À l'aide d'une pipette, verser dans le petit tube de l'HCl,

5.2.2 Mode opératoire

1. Modifier la hauteur de l'ampoule pour que l'eau salée soit au même niveau dans l'ampoule et le tube gradué (le contenu de l'érlemeyer sera à la pression atmosphérique),
2. Noter le niveau,
3. Incliner l'érlemeyer pour faire couler l'acide sur l'échantillon,
4. Reposer l'érlemeyer et attendre la fin de la réaction et le rééquilibrage thermique,
5. La pression du tube gradué est supérieure à la pression atmosphérique,
6. On rétablit la pression atmosphérique en descendant l'ampoule jusqu'à obtenir le même niveau dans l'ampoule et le tube,
7. Le CO2 est à la pression atmosphérique, la mesure peut être effectuée,
8. Ouvrir l'érlemeyer, ajouter un peu d'acide sur l'échantillon pour vérifier que tout le CaCO3 a été attaqué.

1. Il existe aussi des modèles rares d'érlemeyer avec un doigt inversé dit érlenmeyer pour culture. L'HCl est versé directement dans le doigt inversé, il suffit ensuite d'incliner l'érlenmeyer pour que l'HCl coule sur le sédiment.
5.2.3 Calcul de la teneur en CaCO$_3$

\[
\text{CaCO}_3 + 2\text{HCl} \rightleftharpoons \text{CaCl}_2 + \text{H}_2\text{O} + \text{CO}_2 \quad (5.19)
\]

HCl étant en excès, son action sur une mole de CaCO$_3$ (100 g/mol) libère
une mole de CO$_2$ (22400 mL). Connaissant le volume de CO$_2$ dégagé (niveaux final et initial), on calcule la masse de CaCO$_3$ attaqué. Connaissant la masse de CaCO$_3$ et la masse de l’échantillon, on peut calculer le pourcentage de CaCO$_3$ dans l’échantillon.

Soit une masse de l’échantillon de 0.50 g, un niveau initial de 0 mL, un niveau final de 25 mL.

\[
\begin{array}{|c|c|}
\hline
\text{Masse de CaCO}_3 & \text{Volume de CO}_2 \\
100 & 22400 \text{ mL} \\
x & 25 \text{ mL} \\
\hline
\end{array}
\]

\[
x = \frac{(25 \times 100)}{22400} \quad x = 0.11
\]

\[
\begin{array}{|c|c|}
\hline
\text{Masse de CaCO}_3 & \text{Masse de sédiment} \\
0.11 & 0.50 \\
y & 100 \\
\hline
\end{array}
\]

\[
y = \frac{(0.11 \times 100)}{0.50} \quad y = 22
\]

Il est fortement recommandé d’effectuer plusieurs mesures sur un même échantillon afin d’estimer précisément la teneur en CaCO$_3$ d’un échantillon en calculant l’intervalle de confiance (95%) de la moyenne.

5.3 Matière Organique

La matière organique (MO) peut être calculée grâce au rapport constant %MO/%C = 1.724. La teneur en MO peut s’obtenir par la méthode de la perte au feu. Cette méthode est déconseillée pour les échantillons possédant beaucoup de calcaire. Le domaine d’étalonnage de cette méthode varie de 1 à 50% de MO.

5.3.1 Mode opératoire

1. Broyer l’échantillon à l’aide d’un pilon dans un mortier. Les fragments doivent être inférieurs à 2 mm,
2. Sécher l’échantillon pendant 16 h à 150°C,
3. Nettoyer les creusets de porcelaines, les chauffer au rouge et les laisser dans un dessicateur,
4. Peser le creuset à vide,
5. Ajouter le sédiment (max 10 g) et peser à nouveau le creuset rempli,
6. Calciner 16 h dans un four à moulé à 375°C,
7. Laisser refroidir dans un dessicateur et peser le creuset avec les cendres.

5.3.2 Calcul de la teneur en MO

Les résultats sont calculés à l’aide des équations suivantes :

\[
\%MO = \left(\frac{\text{Poids séd. sec (g)} - \text{Poids séd. incinéré (g)}}{\text{Poids séd. sec (g)}} \right) \times 100 \quad (5.20)
\]

\[
\%MO = \left(\frac{(P_1 - P_0) - (P_2 - P_0)}{(P_1 - P_0)} \right) \times 100 \quad (5.21)
\]
Avec P_0, la masse du creuset vide, P_1, la masse finale, P_2, la masse du creuset contenant les cendres.

Une régression permet l'équivalence entre les résultats par la méthode de la perte au feu (PAF) et celle de Walkley Black (WB) pour une étendue de 0 à 8% de MO.

\[\%MO(PAF) = 0.9932 \times MO(WB) + 0.587 \] (5.22)

5.4 Teneur en eau

La teneur en eau d’un échantillon varie en fonction de la granulométrie du sédiment, de sa nature (composante argileuse par exemple) et d’autres paramètres comme la température et l’humidité de l’air. La mesure de la teneur en eau d’un échantillon prélevé dans le domaine intertidal peut parfois s’avérer très problématique selon le degré de ressuyage du sédiment. Ce degré de ressuyage est directement lié au temps écoulé depuis le début de l’exondation mais aussi à d’autres paramètres comme la température de l’air et la vitesse du vent qui contribuent à accélérer le séchage du sédiment.

5.4.1 Dosage

Le sédiment humide est pesé et mis à l’étuve (105°C pendant 24 h). Le matériel sec est pesé à nouveau. La teneur en eau peut alors être calculée.

\[\text{Teneur en eau} = \left(\frac{\text{Poids échantillon humide} - \text{Poids échantillon sec}}{\text{Poids échantillon sec}} \right) \times 100 \] (5.23)

5.4.2 Calcul de concentration pour un sédiment humide

- pesée du sédiment humide (PSH),
- séchage à l’étuve (105°C) pendant 24 h puis pesée du sédiment sec (PSS).

PSH – PSS = Poids ou Volume d’eau contenu dans cette solution. On considère que la densité du sédiment (sable-vasse) est de 2.5. Un poids de x_{gr} de sédiment sec, occupe un volume de $x_{gr}/2.5 = \text{Volume du sédiment}$. Dans une solution de sédiment, existe un volume d’eau et un volume de sédiment. En divisant le poids du sédiment sec par la somme des deux volumes trouvés et en multipliant ce résultat par 1000 (volume du litre d’eau), on obtient la concentration.

<table>
<thead>
<tr>
<th>Poids séd. humide</th>
<th>Poids séd. sec</th>
<th>Vol. sédiment</th>
<th>Vol. d’eau</th>
<th>Vol. total solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.2934</td>
<td>30.124</td>
<td>12.05</td>
<td>31.17</td>
<td>43.22</td>
</tr>
</tbody>
</table>

Concentration : $(30.124 \times 1000)/43.22 = 697$ g/l. Pour obtenir une concentration de 100 g/l, prendre $(100_{gr} \times 1000 \text{cc})/697_{gr} = 143.47 \text{cc}$ de solution et compléter à 1 l.
5.5 Tassement et rhéologie des vases

5.5.1 Vitesse de chute et flocculation des particules

Les sédiments pélitiques ou lutites ont une taille inférieure à 40 μm. On peut classer sommairement les sédiments fins comme suit :

- Silts. De 100 à 10 μm. Faible tassement du culot de dépôt,
- Limons. De 40 à 2 μm. Tassement effectué en quelques jours,
- Argiles. < 2 μm. Elles correspondent à une variété minéralogique particulière,
- Bouches. Terre et/ou poussières d'origine terrestre mélangées d'eau,
- Poudres. Substances solides finement broyées. Mélange à l'eau, elles forment des substances aux propriétés analogues à celles des limons ou des bouches mais elles possèdent un élément qui domine leur composition,
- Tangue. Sédiment déposé dans certaines vasières intertidales dominé par une fraction carbonatée d'origine bioclastique (débris coquilliers ou phyco-gènes - matériel concassé très finement) et d'une fraction limonéuse et/ou argileuse,
- Vases. Terme générique qui caractérise des matériaux très fins à fort pourcentage de colloïdes avec une abondance de matière organique. Leur tassement est très long et leur rigidité (ou cohésion) varie rapidement avec leur teneur en eau.

5.5.2 Caractéristiques granulométriques, minéralogiques et chimiques des sédiments vaseux

Les études de tassement sont réalisées sur les fractions < 40 μm ou vases purs ou sur des mélanges avec des pourcentages croissants de silts et de sables fins. La mise en suspension a lieu dans des eaux de salinité croissante ou dans les eaux d’origine.

Granulométrie

Les particules de 30 μm chutent à environ 1 mm/s. Les diamètres moyens s’étalent de $1/10^{10}\text{m}$ de μm à une dizaine de μm pour certains limons. Les vases marins les plus fines ont une courbe hyperbolique (décantation en zone calme), les sédiments fluviaux une courbe parabolique (excès de charge).

0.00001	0.0001	0.001	0.01	0.1	1	Vitesse de chute en mm/s
0.1	0.3	1	3	10	30	Diamètre équivalent en μm

Composition chimique et minéralogique

Les vases marins équatoriaux, riches en kaolinite, ont des formes hyperboliques. Les vases marins des régions tempérées à illite dominante, kaolinite et smectite, ont un profil logarithmique. Les vases estuariennes ont souvent des profils logarithmiques ou paraboliques.
Les éléments grossiers de type sable, graviers et galets ont un comportement individuel en milieu aqueux. Au contraire, les limons et les vases sont soumis à la flocculation, phénomène qui contribue à former des agrégats dont la vitesse de chute est supérieure à celle des particules élémentaires. La surface spécifique est la surface latérale de la masse unitaire. Un volume de matière de 1 cm\(^3\) de particules de 1 µm représenterait une surface développée de 4.20 m\(^2\) en admettant un indice de vide de 30%.

La loi de Stockes décrit la vitesse de chute :

\[
W = \frac{1}{18} \frac{\rho_s - \rho_o \cdot d^2 g}{\rho_o \cdot \nu} \tag{5.24}
\]

avec \(\rho_s\) la masse spécifique de la particule en kg/m\(^3\); \(\rho_o\) la masse cinématique de l’eau en m\(^2\)/s (ou en stockes cm\(^2\)/s) (\(= 1.10^{-6}\) m\(^2\)/s à 20°C pour l’eau pure et à 1.6.10\(^{-3}\) m\(^2\)/s pour l’eau pure à 4°C), \(d\) le diamètre équivalent de la particule.

Si une particule de densité 2.5 à 2.6 tombe dans une eau douce à 20°C (viscosité = 1.10\(^{-6}\) m\(^2\)/s), le rapport entre le diamètre équivalent en µm et la vitesse de chute en µ/s est donné par \(d_{\text{en µm}} = W_{\text{en µm/s}}^{1/2}\).

La flocculation est d’autant plus élevée que :

- la concentration électrolytique augmente,
- les valeurs des ions augmentent,
- la température augmente,
- la dimension de l’ion hydraté diminue,
- la constante diélectrique diminue,
- le pH diminue,
- le pouvoir d’absorption des anions diminue.

Une suspension de vases dans l’eau sera d’autant mieux flocculée que :

- les particules élémentaires seront plus petites,
- leur concentration dans la suspension sera élevée,
- le milieu contiendra beaucoup de sels flocaants,
- la température de l’eau sera élevée.

Les vitesses moyennes de chute de vases ou de limons, à l’état défloculé (sous forme de particules élémentaires) dans l’eau pure sont comprises entre 10\(^{-5}\) et 10\(^{-1}\) mm/s. Dans l’eau de mer, pour une concentration en particules solides de 10 g/l, les vitesses moyennes de chute des flocons sont comprises entre 1.5.10\(^{-1}\) mm/s et 6.10\(^{-1}\) mm/s, donc un rapport de 1 à 4. Le facteur de flocculation est :

\[
F = \frac{W_f 50\%}{W_p 50\%} \tag{5.25}
\]

Avec \(W_f\) les vitesses de chutes moyennes, \(W_f\) des flocons en milieu aqueux flocaant, \(W_p\) des particules élémentaires en milieu défloculé.

Ce facteur de flocculation varie comme l’inverse du diamètre équivalent \(d\) des particules élémentaires. Le facteur de flocculation est d’autant plus élevé que les particules sont plus petites. Pour 10 g/l de sédiment sec dans une eau de mer à
CHAPITRE 5. AUTRES ANALYSES CLASSIQUES

30% de salinité → \(F = 250 d^{-2} \). Une suspension de vases, en milieu floculant, aura en eaux calmes des vitesses moyennes de chute de 0.15 à 0.60 \(\text{mm/s} \), quelle que soit la dimension des particules élémentaires. Quand les particules sont > 40 \(\mu \text{m} \), le floculation ne joue plus. Si la suspension est agitée, la formation des agrégats peut être accélérée et on peu subir des vitesses moyennes de chute des flocons de l’ordre de 1 à 1.5 \(\text{mm/s} \), par exemple à l’étale des pleines-mers en estuaire.

5.5.3 Tassement des vases

Au cours du tassement, les vases perdent dans un premier stade leur eau interstitielle et dans un stade ultérieur de l’eau de la double couche avec arrangement des particules solides et de leur eau adsorbée. Une vase liquide contient encore beaucoup d’eau interstitielle. Une vase devient plastique quand il reste encore l’eau de la double couche et elle est solide lorsque les particules sont en contact les unes avec les autres. L’évacuation des eaux s’effectue de façon homogène en surface par remontée des eaux mais des puits préférentiels de drainage, où s’accumulent les éléments grossiers, peuvent apparaître. Le drainage peut aussi se faire par la base ou latéralement si la vase repose sur du sable perméable. La concentration moyenne d’un dépôt varie comme le log du temps avec différents domaines de tassement correspondant à la vitesse entravée des flocons. La concentration (poids de particules sèches par volume de mixture) est :

\[
T_s = \alpha \log t + \beta
\] (5.26)

Avec \(t \) le temps de tassement, \(\alpha \) le facteur lié au diamètre des particules, \(\beta \) le facteur lié au milieu aquareux. Pour les études de tassement, on utilise la sonde \(\alpha \)-densimétrique qui mesure la densité des dépôts en profondeur et la sonde rhéologique qui mesure la rigidité des dépôts en profondeur. À l’aide de tubes transparents de 10 cm de diamètre et des hauteurs croissantes de 0.25 à 4 m, on introduit des mixtures de vases (en eau douce ou de diverses salinités) avec des concentrations variables allant de 5 à 300 \(g/l \). La température est maintenue constante à 20 °C. On peut également ajouter des pourcentages variables de sables et de silts. On effectue périodiquement des mesures de concentrations des dépôts au \(\alpha \)-densimètre. Les caractéristiques des dépôts sont :

- \(T_s \) la teneur en sédiment sec soit la masse de sédiment sec contenue dans l’unité de volume de mixture. \(T_s \) s’exprime en \(kg/m^3 \) ou en \(g/l \),
- \(T_e \) la teneur en eau soit le rapport du poids de l’eau contenue dans l’échantillon au poids de sédiment sec après étude à 105 °C. \(T_e \) s’exprime en %,
- \(\rho_m/\rho \) la densité de mixture soit le rapport entre la masse de l’unité de volume de mixture à la masse volumique de l’eau à 4 °C.

\[
\frac{\rho_m}{\rho} = 1 + \left(\frac{\rho_s - \rho_o}{\rho_s} \right) \cdot \left(\frac{T_s}{1000} \right)
\] (5.27)

Si \(\rho_s = 2500 kg/m^3 \) et \(\rho_o = 1000 kg/m^3 \), alors

\[
\frac{\rho_m}{\rho} = 1 + 0.6.10^{-3}T_s
\] (5.28)
CHAPITRE 5. AUTRES ANALYSES CLASSIQUES

\[Te\% = \left(\frac{\rho_0}{T_s} \right) - \left(\frac{\rho_0}{\rho_s} \right) \cdot 100 \]

(5.29)

5.5.4 Propriétés physique d’une particule solide en eau calme

Selon que le mouvement relatif du fluide par rapport à la particule est lent, moyen ou rapide, l’écoulement sera laminaire (régime de Stokes), semi-turbulent (régime d’Allen) ou turbulent (régime de Newton-Rittinger). Ces différents régimes correspondent à des nombres de Reynolds déterminés. Le nombre de Reynolds est le rapport des forces d’inertie aux forces de frottements visqueux. Pour une particule tombant dans l’eau, \(Re = \frac{W \cdot D}{\mu} \) avec \(W \) la vitesse de chute, \(D \) le diamètre de la particule et \(\mu \) la viscosité cinétique de l’eau soit \(10^{-6} \text{m}^2/\text{s} \) à 20°C et \(1.6 \times 10^{-6} \text{m}^2/\text{s} \) à 3.5°C.

- écoulement laminaire: \(Re < 1 \), \(W = KD^2(D < 0.12 \text{mm}) \), vases, limons, silts,
- écoulement semi-turbulent : \(1 < Re < 500 \), \(W = KD(0.12 < D < 2 \text{mm}) \), sables,
- écoulement turbulent : \(Re > 500 \), \(W = KD^{1/2}(D > 2 \text{mm}) \), graviers, galets.

Il est nécessaire de prendre en considération l’influence de la viscosité du liquide et donc de la température. La vitesse de chute pourra être réduite de moitié quand la température de l’eau passe de 30°C à 4°C.

- écoulement laminaire: la vitesse de chute (\(\text{cm/s} \)) est \(\left(\frac{D}{100} \right)^2 \). Une particule de 30 \(\mu \text{m} \) chute à 0.1 cm/s,
- écoulement semi-turbulent: pour des sables naturels de masse volumique \(\rho = 2.6 \text{kg/m}^3 \), la vitesse de chute (\(\text{mm/s} \)) est 125\(D \). Un sable de 1 mm de diamètre chute à 12.5 cm/s,
- écoulement turbulent: Un galet de 50 cm chute à une vitesse de 2 m/s.

5.5.5 Ensemble de particules

Lorsque les particules qui tombent dans un liquide sont très nombreuses, elles peuvent se gêner et la vitesse de leur chute d’en trouve considérablement modifiée. On parle alors de vitesse entravée. Si ces particules sont fines, elles ont tendance à s’agglomérer et à former de petits flocons. On parle de flocculation.

Vitesse de chute entravée

La vitesse de chute des particules supérieures à 100 \(\mu \text{m} \) diminue quand la concentration de la suspension augmente. Par exemple, un sable fin à une concentration de 100 g/l chute 0.75 fois moins vite que la particule élémentaire.
Floculation des fines

Pour les particules fines, la floculation est la propriété de générer des agrégats de dimensions très supérieures à celles des particules élémentaires (agrégats de 0.7 à 2 mm pour des particules de quelques µm). Une particule élémentaire de vase de 1 µm a une vitesse de chute de 0.001 mm/s, c'est-à-dire qu'elle met 12 jours pour parcourir 1 m de hauteur dans une eau calme. À l'état floculé, sa vitesse de chute est comprise entre 0.1 et 0.8 mm/s. Elle est donc multipliée par un facteur 100 à 800 (en moyenne un facteur 500). Elle ne mettra donc plus que 2000 secondes soit 1/2 heure pour parcourir 1 m de hauteur d'eau. La vitesse de chute augmente :

- avec la concentration, entre 0 et 20 g/l, puis elle rédiminue la vitesse de chute entravée. Elle augmente de 0.02 à 0.2 mm/s (facteur 10),
- avec la salinité. La vitesse de chute augmente quand la salinité passe de 0 à 5‰ puis elle reste constante. Pour une concentration de 2 g/l, la vitesse de chute passe de 0.05 mm/s à 0.5 mm/s pour une salinité de 3‰.

Dans la nature, les vases défloculées ont des vitesses de chutes de l'ordre de 0.5 mm/s en eau calme. Dans les estuaires, la vitesse de chute des macrofloculons qui se forment au voisinage des étales de haute et basse-mer peut atteindre 1 à 2 mm/s.
Chapitre 6

Représentations cartographiques

L'objectif d'une campagne d'échantillonnage de sédiment peut être la réalisation d'une carte sédimentologique et/ou morpho-sédimentologique. Ce type de carte peut représenter plusieurs informations superposables. La couverture sédimentaire d'un secteur géographique peut être étudiée à travers l'analyse de sa surface (couverture superficielle) ou de sa sub-surface (épaisseur des dépôts). L'estimation de l'épaisseur des dépôts sédimentaires peut s'effectuer par réflexion sismique. Les sonogrammes produits permettent de connaître et de mesurer la structure interne et la puissance des sédiments meubles et d'étudier ainsi leur mise en place.

6.1 Légende des cartes

La légende de la carte représentera généralement les classes de tailles de grains selon une échelle existante (Blott et Pye, Föllk et Ward, Udden, Wentworth...) ou à définir (Fig. 6.1), les groupes texturaux, le pourcentage de carbonates mais aussi la teneur en eau ou la matière organique. Selon la nature des sédiments rencontrés sur la zone d'étude, l'échelle de la carte, les classes de tailles de grains devront être fusionnées (dans le cas d'un secteur très hétérogène) ou, au contraire, divisées (dans le cas d'un secteur très homogène) [2] [3] [10] [40] [57]. Les principaux types de cartes sont :

- carte morpho-sédimentologique,
- carte des figures sédimentaires,
- carte des faciès sédimentaires,
- carte de distribution du calcaire,
- carte des formations superficielles,
- carte des groupes texturaux.

Les cartes peuvent être séparées en deux groupes : celles qui portent principalement sur la morphologie et la nature des fonds et celles qui portent sur la distribution des sédiments ou des carbonates.
CHAPITRE 6. REPRÉSENTATIONS CARTOGRAPHIQUES

Fig. 6.1 – Légendes utilisées pour les cartes sédimentologiques de l’archipel de Chausey

<table>
<thead>
<tr>
<th>Faciès sédimentaires (modifiés selon Wentworth, 1922)</th>
<th>Groupes texturaux (Folk & Ward)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravier très fin (2-4 mm)</td>
<td>Gravier à éléments sableux</td>
</tr>
<tr>
<td>Sable très grossier (1-2 mm)</td>
<td>Sable à éléments gravelaux</td>
</tr>
<tr>
<td>Sable grossier (500 µm - 1 mm)</td>
<td>Sable légèrement gravelieux</td>
</tr>
<tr>
<td>Sable moyen (250-500 µm)</td>
<td>Sable vaseux à éléments gravelieux</td>
</tr>
<tr>
<td>Sable fin (125 - 250 µm)</td>
<td>Sable vaseux légèrement gravelieux</td>
</tr>
<tr>
<td>Sable très fin (40 - 125 µm)</td>
<td>Sable</td>
</tr>
<tr>
<td>Silt (>40 µm)</td>
<td>Sable vaseux</td>
</tr>
</tbody>
</table>

Distribution quantitative du calcaire (CaCO₃):
- Teneur supérieure à 85%
- Teneur de 70 à 85%
- Teneur de 50 à 70%
- Teneur de 30 à 50%
- Teneur inférieure à 30%

CaCO₃
- 0-25%
- 25-50%
- 50-75%
- 75-100%

Figures sédimentaires du domaine intertidal
- Crêtes de Vagues de sable
- Crêtes de Bancs

Figures sédimentaires
- Axes de Trainées sableuses
- Rubans, Langues sableuses
- Champs de crêtes de Mégarides à longueur d’onde comprise entre 5 et 10 m
- Champs de crêtes de Mégarides à longueur d’onde comprises entre 10 et 15 m
- Champs de crêtes de Mégarides à longueur d’onde comprise entre 15 et 20 m
- Champs de crêtes de Mégarides à longueur d’onde comprise entre 20 et 25 m
- Structures linguoidales
- Crêtes de Vagues de sable

6.2 Nature des fonds

Les cartes de nature des fonds permettent de séparer distinctement les fonds rocheux et les fonds sédimentaires. Les principaux ensembles sédimentaires (ou faciès) peuvent être décrits en détails (bio ou lithoclastiques, présence de dé-
Les cartes de figures sédimentaires sont réalisées grâce à des images acquises par sondeur bathyétrique et sonar latéral. Elles permettent de connaître et de spatialiser l'architecture et l'orientation des figures d'accumulations sédimentaires (Fig. A.1). Ces figures peuvent généralement être séparées en deux catégories en fonction de leur orientation par rapport à la direction dominante du transport sédimentaire. Lorsque les figures sont parallèles à la direction dominante, on parle de figures longitudinales et lorsque qu'elles sont perpendiculaires, on parle de figures transversales.

- Les figures longitudinales peuvent être des bancs sableux de plus ou moins grande amplitude (plusieurs kilomètres de longueurs parfois) et souvent façonnés par des structures transversales (rides et méga-rides), de traînées sableuses, de rulans et de langues sableuses, de queues de comètes...
- Les figures transversales peuvent être des mégarides de longueur d'onde supérieure au mètre, des vagues de sables d'une amplitude maximale de plusieurs mètres et d'une longueur d'onde très grande (supérieure à la centaine de mètres) mais aussi des croissants de plage, des barres d'estran...

6.3 Faciès sédimentaires

Les cartes de répartition des sédiments superficiels sont établies à partir de données granulométriques. Ces données correspondent à l'analyse granulométrique du sédiment comprenant une phase lithogène détritique et une phase biogène carbonatée. On utilise ensuite les indices classiques pour déterminer la taille du grain moyen et identifier la phase granulométrique principale ou dominante et le classement du sédiment (So de Trask par exemple). Les faciès peuvent ainsi être définis (Fig. A.3, A.4). Il est souhaitable d’indiquer systématiquement la classe de taille à laquelle se rapporte le faciès (silts et sables fins, 40 à 200 µm). Parfois, subdiviser les faciès selon la prédominance (> 75-80%) ou la dominance (50-60%) de chaque fraction granulométrique est nécessaire lorsqu’le secteur d’étude est composé de sédiments pluri-modaux. Des faciès intermédiaires peuvent alors exister. Par exemple, un sédiment composé de 40% de sables grossiers, 40% de sables moyens et 20% de sables fins est représenté par une classe intermédiaire de sables grossiers et moyens. Certains sédiments sont encore plus hétérogènes et peuvent être composés de graviers, de sables grossiers et de vases. Il s'agit souvent de sédiments très riches d’un point de vue biologique.

Les cartes de distribution du calcaire peuvent être représentées à part ou avec les principaux faciès (Fig. A.5). Dans ce cas, il est nécessaire d’établir une légende croisée (Fig. 6.1). Il est possible de représenter la nature de la phase carbonatée lorsqu’elle peut être connue (coquilles entières, débris, bivalves et gastéropodes, maërl...), ce qui n’est pas possible pour les tangues par exemple. Les pourcentages relatifs entre les différents types de bioclastes peuvent être estimés visuellement sur photographies et représentés.
6.4 Mode opératoire

Pour procéder à la réalisation d’une carte sédimentologique, il est souhaitable de s’appuyer sur une image aérienne ou acoustique (acquise par sonar latéral) (Fig. 6.2). L'interprétation de cette image permettra de dessiner les principales structures visibles et de délimiter, au moins grossièrement, les faciès les plus caractéristiques du point de vue de la structure et de la texture (Fig. 6.3). On nomme isophène ces entités homogènes. A titre d’exemple, un secteur de sables moyens modelés en ripple-marks pourra être assez aisément délimité.

Fig. 6.2 – Sonar acoustique EdgeTech à bord du N/O Serpula Heriot-Watt University, Edinburgh

Fig. 6.3 – Image acoustique du Chenal de Beauchamp, Archipel de Chausey

Une stratégie d’échantillonnage pourra alors être choisie selon un plan stratifié. Cette méthode est particulièrement recommandée pour les secteurs très hétérogènes comme les archipels. Si le secteur d’étude est en apparence particulièrement homogène, comme certaines baies, on optera pour un plan régulier.
selon une maille à définir en fonction de critères logistiques et scientifiques. Sur
le terrain, les échantillons prélevés sont systématiquement géoréférencés à l'aide
d'un GPS, de manière à ce que chaque rupture de faciès ou de modèles soit
localisée. Des photographies du sédiment sont aussi très utiles pour le choix
des classes (sédiment nu, colonisé ou non par des algues, avec des dépôts co-
quilliers...). Il devient ensuite possible d'insérer l'ensemble de ces informations
(images, photographies, coordonnées x, y et z, courbe granulométrique, données
quantitatives et qualitatives...) dans un Système d'Information Géographique
(SIG). Enfin, les cartes proprement dites sont réalisées à l'aide d'un logiciel de
dessins vectoriels de type Adobe Illustrator CS4©.

L'archipel de Chausey (Manche), situé dans le golfe normand-breton, a ré-
cemment fait l'objet d'une vaste campagne de cartographie morpho-sédimentaire
de son domaine intertidal. Quelques cartes sont fournies ci-après (Fig. A.3, A.4,
A.6, A.5, A.1, A.2 et Fig. A.7, A.8). Enfin, un article est proposé à titre
d'exemple.
Annexe A

Cartes sédimentologiques
Fig. A.1 – Carte morpho-sédimentologique de l’archipel de Chausey
Fig. A.2 – Carte des figures sédimentaires de l’archipel de Chausey
Fig. A.3 – Carte des faciès sédimentaires de l’archipel de Chausey
Fig. A.4 – Carte des formations superficielles de l’archipel de Chausey
Fig. A.5 – Carte de la distribution du calcaire de l'archipel de Chausey
ANNEXE A. CARTES SÉDIMENTOLOGIQUES

Fig. A.6 – Carte des groupes texturaux de l’archipel de Chausey
ANNEXE A CARTES SÉDIMENTOLOGIQUES

Fig. A.7 – Carte sédimentologique de la baie du Mont-Saint-Michel

Fig. A.8 – Carte biosédimentologique du récif de Sabellaria alveolata de Champeaux
Annexe B

Article
Résumé
La distribution des formations superficielles de l’estran de l’archipel de Chausey (Manche) a été établie à partir d’analyses granulométriques et calcimétriques d’échantillons sédimentaires prélevés sur l’ensemble du domaine intertidal et dans le proche domaine subtidal et de l’étude de la morphologie de l’estran et des petits fonds basée sur une mosaïque photographique associée à une campagne de prospection au sonar à balayage latéral. Cette étude a été menée dans le cadre du Programme National Environnement Côtier (PNEC) qui s’est déroulé de 2004 à 2007. En domaine intertidal, la répartition des faciès sédimentaires est complexe en raison du régime hydrodynamique particulièrement fort de la région, lié à l’amplitude exceptionnelle des marées (marnage de 14 m en vive eau). Le domaine infralittoral proche présente quelques accumulations de sables bioclastiques et terrigènes et de dépôts phycogènes (maërl) et zoogènes qui se rencontrent entre 5 et 15 m de profondeur. La multitude d’affleurements rocheux isolés, de platiers et la prédominance de sédiments grossiers sur l’ensemble du secteur cartographié témoignent de la puissance des agents hydrodynamiques dans cette zone (courants de marée et houles). D’autre part, l’archipel de Chausey offre une grande variété de formes sédimentaires dont des bancs de maërl à l’est qui se développent dans des secteurs moins soumis aux fortes agitations. Il se caractérise aussi par la coexistence de deux systèmes de dépôts : l’un I tergène, d’origine proximale, localisé principalement dans la partie occidentale ; l’autre carbonaté, d’origine distale mais aussi proximale, situé dans la partie orientale. Cette production carbonatée est particulièrement abondante compte-tenu du milieu tempéré et de la présence de biodénoses intertidales comme les herbiers de phanérogame marine (Zostera marina) et des banquettes à lanicides (Lanicé conchilega), qui modifient localement les conditions de sédimentation.

Abstract
The distribution of the superficial sedimentary deposits of the Chausey archipelago has been studied by means of grain size and carbonate content analysis on subtidal and intertidal facies. The landform analysis of intertidal and shallow-water areas was achieved using a combination of a mosaic of aerial photographs and side-scan sonar data. This study was part of the French National Coastal Environment Program (PNEC) which was conducted from 2004 to 2007. The extreme tidal regime of the study area, which has 14 m tidal range during high spring tides, induces strong tidal currents. The intertidal sedimentary deposits have a complex distribution linked to the wide range geomorphological diversity of the small islands. The subtidal zone shows various bedforms between 5 and 15 m water depths. The archipelago is characterized by numerous rocky outcrops and very coarse sediments widely distributed over the mapped area; this abrasion platform is submitted under very high hydrodynamic conditions and consequently has a poorly developed sedimentary prism. Two systems of deposit occurs: the first one, located in the western part of the archipelago, is proximal and terrigenous whereas the other one, dominating the eastern part of Chausey, is distal and has a high carbonate content. The Chausey carbonate production is extremely abundant given its temperate
environment and the presence of intertidal benthic communities that may play an active role in the sedimentation such as seagrass meadows (Zostera marina) or worm bioherms (Lanice conchilega).

Introduction

Dans le cadre de plusieurs programmes scientifiques récents portant sur la distribution des habitats benthiques à l'échelle du golfe normand-breton (REBENT, PNEC, CNES-IFEN, Natura 2000) des campagnes de prospection de l'estran et des petits fonds ont été réalisées sur l'archipel de Chausey. La cartographie des formations superficielles concerne essentiellement le domaine intertidal, largement découvrant dans ce secteur à très fort marnage, mais aussi le proche domaine infralittoral et précisément les chenaux qui structurent l'archipel en trois ensembles distincts. Les techniques utilisées comprennent la cartographie de la zone intertidale par l'analyse d'une mosaïque ortho-photographique, des levés et des prélèvements sur le terrain et la reconnaissance des fonds des chenaux à l'aide d’un sonar à balayage latéral auquel ont été associés des prélèvements à la benne Shipek (Augris et al., 1996).

L’objectif de cette étude est de décrire la nature et la morphologie de l’estran et des chenaux afin d’identifier les grandes structures morpho-sédimentaires qui caractérisent cet archipel assez peu étudié jusqu’alors. Après une présentation générale du site, les techniques utilisées seront décrites ainsi que l’origine des données ayant servi de base à l’élaboration de la carte morpho-sédimentaire (Fournier et al., 2007a). Les principaux résultats obtenus sont interprétés en relation avec les caractéristiques hydrodynamiques du golfe normand-breton.

1. Géologie et bâti structural

L’archipel de Chausey est situé dans le golfe normand-breton à 5 milles à l’ouest de Granville et à 10 milles au nord de Saint-Malo (Fig. 1). Il a fait l’objet de plusieurs études concernant la géologie de son substratum rocheux (Doré et al., 1988 ; Hommeril, 1967 ; Jonin, 1978). En revanche, la couverture sédimentaire de l’estran et des fonds marins associés n’a fait l’objet que d’une seule étude menée par Fortin (1972). L’archipel s’étend d’est en ouest sur 12 km et du nord au sud sur 5,5 km. Il compte 52 îlots toujours émergés d’une superficie totale de 82 hectares (dont 49 pour Grande-Île) ; 38 îlots sont végétalisés et 14 des rochers nus. L’estran s’étend sur plus de 1 995 hectares et présente des caractéristiques géomorphologiques particulières qui s’expliquent par la géologie de l’archipel et les paramètres hydrodynamiques du golfe normand-breton (Le Hir et al., 1986a).

L’archipel de Chausey constitue l’affleurement d’un massif intrusif de granitoïdes datés à 596 ± 12 Ma mis en place au Cadomien au sein de roches encaissantes briovériennes qui n’affleurent pas (Jonin, 1978). Il appartient au pluton fini-cadomien de la Mancellia (Doré et al., 1988). Jonin (1978) a montré que le massif est constitué...
par une granodiorite avec injection centrale d’un granite porphyroïde tardif. Ce massif a été brisé en trois blocs par un jeu de failles normales orientées SE-NW et son extension sous la mer correspond approximativement à l’isobathe -10 mètres (côte marine). Ces deux couloirs de failles sont empruntés actuellement par les grandes passes que sont le Chenal de Beauchamp à l’est et le Sund à l’ouest, profondes d’une dizaine de mètres au maximum. Le secteur occidental correspond au bloc le plus haut ; on y trouve les îlots les plus étendus et les plus élevés, dont Grande-Île (24 m). La granodiorite a été exploitée depuis plusieurs siècles pour la construction du Mont Saint-Michel et jusqu’à la reconstruction de la ville de Saint-Malo après la seconde guerre mondiale ; l’archipel constitue ainsi l’une des plus vastes carrières marines de France. De très nombreux fronts de taille sont encore visibles sur l’ensemble des platiers rocheux de Chausey.

Trois secteurs peuvent être distingués :
- le secteur oriental de l’archipel qui est composé de sables grossiers bioclastiques et ne compte que peu d’îlots ;
- le secteur central autour du Sund qui est formé de vase sableuse avec une fraction grossière lithoclastique très variable ;
- le secteur occidental, le plus élevé (20-30 m), qui compte de très nombreux platiers et îlots et présente des sédiments très hétérogènes, allant des sables vaseux et sables moyens coquilliers jusqu’aux sables grossiers lithoclastiques.

2. Contexte hydrodynamique

La marée est l’agent hydrodynamique majeur qui commande l’essentiel des mouvements des masses d’eau dans le golfe normand-breton. L’onde de marée venant de l’océan Atlantique est diffusée par l’effet barrière de la presqu’île du Cotentin, entraînant la formation d’une onde stationnaire qui augmente l’amplitude de la marée. Les amplitudes de marée croissent du nord du golfe normand-breton (6 m en vive-eau moyenne) vers la baie du Mont Saint-Michel (12 m en vive-eau moyenne). Les règles de distribution des sédiments marins du golfe normand-breton obéissent principalement à celles de la répartition des vitesses maximas des courants relevés en vive-eau. Partant des zones du large à forte énergie, les courants s’affaiblissent graduellement vers la baie du Mont Saint-Michel, amenant la mise en place de dépôts graveleux, puis sableux, voire vaseux selon un gradient granulométrique décroissant du nord au sud (Bonnot-Courtois et al., 2002) (Fig. 2). À l’échelle du golfe, les changements rapides de bathymétrie dans les secteurs

GÉOLOGIE DE LA FRANCE, N° 1, 2009
de hauts-fonds (plateau des Minquiers, archipel de Chausey) engendrent des disparités de directions des vecteurs des courants résiduels qui se présentent sous la forme d’une succession de tourbillons anticycloniques et cycloniques (Garreau, 1993).

À Chausey, le régime de marée est mégatidal, avec une amplitude atteignant 14 mètres lors des marées de vives-eaux exceptionnelles. En raison de ce très fort marottage, les courants sont particulièrement puissants et peuvent atteindre localement 3 m/s. Ils modèlent profondément l’estran et les petits fonds, en créant des figures sédimentaires variées (ripples-marks, structures linguoïdales, ridins, rides et mégariques de 1 à 30 m de longueur d’onde, langues sableuses, queues de comètes...) en raison de la présence de la multitude d’îlots et d’écueils présents sur l’archipel. Ces courants contribuent, dans la partie orientale plus exposée, à la mise en place de vastes bancs de sables moyens à grossiers, souvent bioclastiques, nettement visibles sur les photographies aériennes. À l’inverse, on observe dans la partie centrale et surtout dans le secteur occidental, plus protégé des houles et des courants, des dépôts de sédiments plus vaseux.

Les roses de courant de marée, établies par le SHOM, présentent deux caractéristiques : au SE de l’archipel, entre Granville et Chausey, les courants sont de type giratoire ; au SSW de Chausey, ils sont de type alternatif, orientés selon un axe WNWNW-ESE avec une prédominance des courants de flot vers le SE. Même près du fond, les vitesses de courant sont suffisantes pour mettre en mouvement des sables grossiers, voire des petits graviers ainsi que des débris calcaires (maërl) de taille encore plus importante mais plus facilement mobilisables en raison de leur forme et leur densité (Ehrhold, 1999). Autour de l’archipel, la circulation résiduelle se présente sous forme de courants tourbillonnaires dont les vitesses ont été estimées à 10 m/s (Le Hir et al., 1986b ; Garreau, 1993).

Les houles, mesurées entre 1990 et 1992 au large de Saint-Malo, ont une hauteur significative comprise entre 0,50 et 0,70 m, une période moyenne d’environ 5 secondes et proviennent majoritairement du secteur WNW (STNMTE, 1995).

3. Méthodologie

L’échantillonnage a été effectué en 384 stations régulièrement réparties sur l’ensemble du domaine intertidal et localisées à l’aide d’un GPS (MRG SPI24XC) d’une précision de l’ordre de ± 5 m (Fig. 3). Les données photographiques, les observations de terrain et les résultats sédimentologiques sont intégrés dans un SIG (Système d’Information Géographique) utilisé pour l’élaboration des cartes. Les prélèvements ont été effectués à la seringue sur une épaisseur de 8 à 10 cm.

L’analyse granulométrique a été effectuée sur une colonne de tamis après séparation des fractions fines (< 40 μm) par tamisage sous eau. Les statistiques associées aux granulométries ont été calculées à l’aide du programme Gradistat 4.0 (Blott et Pye, 2001), modifié par Fournier (non publié) pour utiliser la norme AFNOR (Gradistat 4.1), via la méthode de Folk et Ward (1957). La classification granulométrique adoptée est analogue à celle de Wentworth (1922) (Textural Groups) et les faciès sédimentaires correspondants sont reportés en légende de la carte. Les teneurs en CaCO3 des sédiments ont été déterminées par la méthode du calcimètre Bernard sur l’ensemble du sédiment et/ou sur la fraction fine quand elle était présente.

Les principaux chenaux de l’archipel ont été cartographiés à partir des données d’un sonar à balayage latéral associées à des prélèvements d’échantillons afin de calibrer les images acoustiques (Baltzer et al., 2004, 2005). Le sonar à balayage latéral permet une reconnaissance en continu des fonds marins et fournit une image acoustique qui permet l’identification des différentes formations et la morphologie détaillée des figures sédimentaires (Augris et Clabaut, 2001). Le sonar utilisé est du type EdgeTech 270 TD dont la résolution horizontale est de l’ordre de 30 cm. Le sonar à balayage latéral émet, grâce à deux transducteurs situés de part et d’autre de son axe, une onde acoustique de très haute fréquence (100 kHz ou 500 kHz) qui se réfléchit sur l’interface eau-sédiment, pénétrant de quelques centimètres au maximum dans les sédiments. Les différents tons de gris sont fonction du coefficient de rétrodiffusion du fond. L’intensité de ce coefficient est liée à trois paramètres : la nature du fond, la topographie et l’état de compaction du sédiment.

Les images sont réalisées en continu le long de profils de navigation sub-parallèles et sont géoréférencées avec un GPS différentiel (Trimble Pathfinder Pro XRS). Les images acoustiques (traitées grâce aux logiciels Isis Sonar® et DelphMap®) ne donnent pas d’informations formelles sur la nature des formations superficielles rencontrées. L’ensemble de la zone prospectée au sonar latéral a fait l’objet de 26 prélèvements de sédiments à l’aide d’une benne de type Shipek afin d’associer aux différentes réponses acoustiques des classes de sédiment.
Fig. 3 - Plan de positionnement des données : prélèvements sédimentologiques et transects par sonar latéral.

Fig. 3 - Location map for the sedimentological samples and the side-scan sonar data.
Fig. 4 - Morpho-sédimentologie des formations superficielles de l’archipel de Chausey.
Fig. 4 - Morpho-sedimentology of superficial deposits of the Chausey archipelago.
4. Résultats

4.1. Le domaine intertidal

La cartographie des formations superficielles intertidales montre deux domaines sédimentaires, séparés par une ligne NW-SE partant du nord de Plate-île vers le sud d’Aneret (Fig. 4). La partie occidentale, nettement plus protégée par des platières rocheuses et des îlots, présente des dépôts à dominante silico-clastique issus du retenanement des anères. La granulométrie de ces sédiments est très variée puisque l’on passe des silts autour du Sund à des sables grossiers près du Chapeau notamment, les sables moyens à grossiers étant dominants dans ce secteur. La partie orientale, relativement uniforme, comprend pour l’essentiel des sédiments grossiers biolithoclastiques et bioclastiques qui sont proches de ceux rencontrés dans le domaine subtidal peu profond.

Le secteur occidental est presque entièrement recouvert de sables et de vases lithoclastiques. Les sables, fins au nord-est, grossiers au nord-ouest, graveleux au Sud, enserrent complètement les vases qui ne se maintiennent que dans la partie centrale, abritée des courants de méré et des houles. Cette vase sablo-sableuse comporte une fraction grossière de graviers et peut ponctuellement passer (secteur du Grand Puceau/ Grand Colombier) à un sable vasseux enrichi en carbonates (CaCO₃ jusqu’à 50 %). En outre, au débouché du chenal du Sund, se situe un dépôt vaseux qui se maintient jusqu’à la formation de mattes d’épaisseurs variables. Les retentions préférentielles des particules fines pouvant aller jusqu’à la formation de phanérogame marine (Lithothamnium corallioides) à un sable grossier litho-biocolique ou, au centre du platier, de sable litho-vasseux. Au nord-est, des dépôts fins de type sablons sont liés aux installations mytilicoles.

4.1.1. Faciès sédimentaires

L’ensemble du domaine intertidal et proche subtidal de l’archipel de Chausey comprend plusieurs faciès principaux allant des vases sablo-vasseux aux graviers présents dans les bancs de l’est.

Les vases sablo-graveleuses, dont le mode principal est inférieur à 63 μm, ont un taux moyen de calcaire oscillant entre 15 et 20 %. Localement, certaines vases présentent un taux proche de 25 à 50 %, notamment à la périphérie des deux principales vasières de haut estran de l’archipel : autour du Sund et celle localisée au sud du Petit Romont, près du Grand Colombier, à l’est de Longue Île et au sud d’Aneret. Ces vasières ne sont pas pures et contiennent presque systématiquement une part importante de sables moyens à grossiers, voire des graviers. La vase située au nord de Grande-Île et à l’est du Grand Puceau est recouverte par un fucus vasicole Fucus luetianus.

Le groupe des sables fins (63-250 μm) et moyens (250-500 μm) a une teneur en calcaire comprise entre 30 et 50 % ; seules deux zones situées de part et d’autre du Vieux ont des teneurs inférieures à 30 %, tandis qu’à l’ouest des Huguenants, ces valeurs s’élèvent à plus de 50 %. Ces sables se situent généralement à proximité immédiate des vasières précédemment décrites, mais à des niveaux bathymétriques inférieurs. Leur répartition est plus dispersée que celle des vasières. Leur principale extension se trouve dans un vaste secteur de part et d’autre de Plate-Île et sous forme de petites taches isolées au sud de l’Epinet et au nord du Grand Romont.

Les sables vases à graviers, dont le mode principal est compris entre 200 et 500 μm, peuvent avoir des teneurs en vase extrêmement variables (entre 2 et 30 %), et des teneurs en carbonates entre 10 et 95 %. Ces sédiments se répartissent en plusieurs points de l’archipel sous forme de bandes plus ou moins continues. Quatre principaux secteurs peuvent être identifiés. Le secteur situé autour du Sund comprend des sables vases-graveleux qui ont des teneurs de carbonate compris entre 10 et 50 %. Comme pour les sables fins et moyens, ces faciès sont localisés à des niveaux bathymétriques plus bas que les vasières précédemment décrites. Le secteur situé près des îlots de l’ouest (Île aux oiseaux, La Meule, La Houlée) est plus morcelé et est constitué de sédiments...
moins carbonatés (20 % en moyenne). Le secteur central situé au nord de Longue-Île jusqu’aux Roches des Guernesiens et d’Aneret jusqu’au Lézard constitue un ensemble continu généralement plus fortement bioclastique (30 % en moyenne). Enfin, le secteur situé au nord des Hugueniants, colonisé par un herbier de phanérogame marine (Z. marina), possède un taux de carbonate pouvant atteindre 60 %. D’autres secteurs, moins étendus, se localisent au Nord de l’archipel (sud de la Sellière) et au nord de la Conchée. Ce dernier secteur est tout à fait remarquable du fait de sa teneur exceptionnellement élevée en CaCO₃ (85 %).

Les sables grossiers, constitués par la classe granulométrique comprise entre 500 μm et 2 mm, sont les sédiments dominants de l’archipel et couvrent, de loin, la plus grande superficie. On peut séparer cet ensemble en deux sous-ensembles. Le secteur occidental est très largement représenté par des sables bioclastiques (25 à 75 % de carbonates) qui peuvent atteindre des teneurs de 80 à 95 % vers la Canue, la Conchée et au Nord de la Mauvaise.

Les graviers sableux, dont le mode principal est supérieur à 2 mm, se localisent dans la partie orientale de l’archipel et forment des bancs orientés nord-sud. Il s’agit du banc de la Canue et celui situé à l’ouest du Roc à la Mauvaise. Les taux de carbonates sont élevés, supérieurs à 25 %, mais atteignent généralement 50 à 75 %. Les sables de l’extrémité sud du banc de la Canue contiennent près de 90 % de carbonates.

4.1.2. Figures sédimentaires

L’interprétation de la mosaïque orthophotographique met en évidence la morphologie et l’orientation des figures sédimentaires de l’estran de l’archipel (Fig. 5). Ces figures sédimentaires peuvent être classées en deux types : les figures transversales qui se caractérisent par une succession de lignes de crêtes perpendiculaires aux courants et à la houle et les figures longitudinales qui s'allongent parallèlement au courant de marée qui les génère (Reineck et Singh, 1980).

Les figures transversales sont constituées par des rives et des mégarides dont la longueur d’onde peut être extrêmement variable : de l’ordre de quelques dizaines de centimètres avec une amplitude de 5 à 20 cm à plusieurs dizaines de mètres (jusqu’à près de 30 m) avec une amplitude d’ordre métrique. La présence et la morphologie des rives dépendent principalement de la granulométrie des sédiments et de l’hydrodynamisme local. Les rives et les mégarides sont largement localisés, pour l’essentiel, dans les sables fins à moyens du secteur oriental de l’archipel. Quelques rives sont toutefois visibles au nord du Chenal du Centre et du Sund dans des sédiments identiques. Les secteurs à mégarides se situent généralement à proximité des grands chenaux de marée et se développent préférentiellement sur les sédiments moyens à grossiers.

Les figures longitudinales sont de plusieurs types et comprennent les trainées sableuses, les rubans et les bancs. Ces figures sont de bons indicateurs indirects de la direction des courants de marée. Les rubans se localisent généralement derrière des îlots et/ou platières rocheuses et à l’ouest du Roc à la Mauvaise. Le banc le plus développé se situe au sud de la Canue, où il atteint plus d’un kilomètre de longueur et découvre à chaque marée du fait de sa hauteur (Fig. 5). Ces figures s’orientent selon un axe WNW-ENE dans la partie septentrionale de l’archipel et pivotent ensuite pour prendre une direction nord-sud.

4.2. Le domaine infralittoral

La prospection au sonar latéral a permis d’identifier les principales figures sédimentaires des trois chenaux majeurs de l’archipel (Fig. 6).

4.2.1. Le chenal du Sund

Cinq faciès acoustiques ont été reconnus :

1) un faciès gris soutenu irrégulier présentant un relief à bord noir délimitant une ombre portée blanche (fig. 6B/6D). Cette réponse acoustique caractérise un ressaut morphologique qui est la signature d’un affleurement rocheux, comme par exemple, les rochers situés en bordure du sud de Grande-Île et de l’Ebauché ;

2) un faciès gris foncé avec un aspect irrégulier (fig. 6C) qui correspond à des sédiments fins vases situés en périphérie des banquettes à Lanicte conchilega. Ce faciès est recoupé par des sédiments plus grossiers répartis sur les sables fins à moyens de l’estran.

3) un faciès gris clair homogène (fig 6C) qui correspond à des sédiments fins vases situés en périphérie des banquettes à Lanicte conchilega. Ce faciès est recoupé par des sédiments plus grossiers répartis sur les sables fins à moyens de l’estran.

4) un faciès gris très écaillé (fig. 6A) qui correspond à des sédiments fins vases situés en périphérie des banquettes à Lanicte conchilega. Ce faciès est recoupé par des sédiments plus grossiers répartis sur les sables fins à moyens de l’estran.

5) un faciès blanc (fig. 6C) correspondant à des sédiments fins vases situés en périphérie des banquettes à Lanicte conchilega. Ce faciès est recoupé par des sédiments plus grossiers répartis sur les sables fins à moyens de l’estran.

GÉOLOGIE DE LA FRANCE, N° 1, 2009

86
Fig. 5 - Figures sédimentaires de l'archipel de Chausey.

Fig. 5 - Sedimentary features of the Chausey archipelago.
Fig. 6 - Sonogrammes du chenal du Sund.
Fig. 6 - Sonograph of the channel of Sund.
le "texturé lisse" qui signe les herbiers de Zostera marina (fig. 6A) ;
5) un faciès gris très clair et lisse (fig. 6A) qui correspond à du sable moyen. Le contact des herbiers avec ce faciès est très net.

4.2.2. Le chenal du Centre
Ce chenal est situé à l'ouest de la Roche des Guernesiais au nord et entre Fortune et Longue-Île au sud. Quatre réponses acoustiques non illustrées permettent de distinguer :
1) un faciès rocheux déjà décrit précédemment et qui correspond à des rochers épars ;
2) un faciès foncé lisse qui correspond à une banquette à Lanice conchilega, en surélévation topographique puisque sa bordure noire signe un ressaut morphologique ;
3) un faciès cailloutis qui correspond à la présence de plusieurs petits rochers et blocs au pied de l'affleurement rocheux ;
4) un faciès lisse qui correspond à du sable vaseux. De petites flèches sableuses, s'étirant en arrière des rochers isolés, sont modelées par des rides métriques.

4.2.3. Le chenal Beauchamp
Il s'agit du plus important et du plus profond des trois chenaux (-12 m). Il emprunte successivement deux directions NW-SE puis N-S qui coïncident avec la paléo-vallée fluviatile creusée dans l'axe d'une fracture du socle. Les mêmes faciès acoustiques que précédemment ont été reconnus. À l'extrémité méridionale, des rubans de mégarides construits par les courants de marée et remodelé superficiellement par la houle et les vagues de tempête. Formation locale de flèches et de cordons sableux,

b - le pôle bioclastique sableux de la partie orientale présentant des faciès plus homogènes modelés en nombreuses figures sédimentaires :
 - sédiments sableux moyens à grossiers, localement riches en coquilles entières de bivalves et de débris de maérl,
 - un ensemble de bancs sableux de géométrie et taille variables localement développés en « queue de comète » à l'abri des rares îlots rocheux,
 - rubans de mégachênes construits par les courants de marée et remodelé superficiellement par la houle et les vagues de tempête. Formation locale de flèches et de cordons sableux,
 - signature allochtone des sédiments, les bioclastes et coquilles de mollusques, les débris de maérl et les graviers de micaschistes soulignent l'origine allochtone des sédiments,
 - richesse exceptionnelle des sédiments en calcaire ;

c - l'unité morpho-sédimentaire centrale constitue la charnière entre les deux pôles sédimentaires. Elle se caractérise par des traits communs aux paysages silico-clastique et bioclastique.

5. Synthèse et conclusion
5.1. Unités morpho-sédimentaires
Les trois unités structurales de l'archipel contrôlent la distribution des sédiments superficiels de la zone intertidale et des petits fonds :

a - le bloc occidental, le plus haut, compte de très nombreux îlots (dont Grande-Île) et platières rocheuses. Les sédiments sont le plus souvent grossiers (sable graveleux et sable grossier) et peu carbonatés (< 30 %) ;

b - le bloc central, le plus vaste, est couvert en majorité de sables moyens avec des teneurs moyennes en carbonates (entre 30 et 50 %) ;

c - le bloc oriental le plus bas, compte peu d'îlots et de platières rocheuses. Il est composé des sédiments les plus grossiers (sables grossiers et graviers) et les plus carbonatés (teneur moyenne en CaCO₃ supérieure à 50 % pouvant atteindre 85 %).

La juxtaposition de ces trois unités morpho-sédimentaires correspond à une évolution progressive du paysage sédimentaire entre deux pôles :

a - le pôle silico-clastique rocheux de la partie occidentale caractérisé par un paysage sédimentaire varié et hétérogène :
 - large spectre granulométrique depuis les graviers jusqu'aux vases,
 - mosaic de petits corps sédimentaires séparés par de nombreux îlots et vastes platières rocheux,
 - signature autochtone des sédiments sableux majoritairement composés de minéraux (quartz et feldspath) provenant de l'érosion du granite,
 - présence discrète mais récente d'une fraction bioclastique composée principalement de bivalves et secondairement de gastéropodes (surtout les littorinidés (Littorina spp., Gibbula spp.) et les troques (Calliostoma zizyphinum)) ;

b - le pôle bioclastique sableux de la partie orientale présentant des faciès plus homogènes modelés en nombreuses figures sédimentaires :
 - sédiments sableux moyens à grossiers, localement riches en coquilles entières de bivalves et de débris de maérl,
 - un ensemble de bancs sableux de géométrie et taille variables localement développés en « queue de comète » à l'abri des rares îlots rocheux,
 - rubans de mégachênes construits par les courants de marée et remodelé superficiellement par la houle et les vagues de tempête. Formation locale de flèches et de cordons sableux,
 - signature allochtone des sédiments, les bioclastes et coquilles de mollusques, les débris de maérl et les graviers de micaschistes soulignent l'origine allochtone des sédiments,
 - richesse exceptionnelle des sédiments en calcaire ;

c - l'unité morpho-sédimentaire centrale constitue la charnière entre les deux pôles sédimentaires. Elle se caractérise par des traits communs aux paysages silico-clastique et bioclastique.

La distribution des sédiments de l'archipel de Chausey se caractérise par des gradients granulométriques directement guidés par la dynamique tidale à laquelle s'ajoute l'influence secondaire de la houle qui remodelée la morphologie et accentue le développement des bancs sableux.

5.2. Interactions bio-sédimentologiques
Certaines biocénoses jouent un rôle sur la sédimentation intertidale, notamment :
 - les herbiers à zostères (Z. marina, Z. noitii) : ces végétaux jouent un rôle actif dans la sédimentation en favorisant les atterrissements puis le maintien en place des particules sableuses et argileuses. Les surfaces colonisées par ces herbiers peuvent être importantes...
et soumises à des variations spatio-temporelles significatives. Ainsi, entre 1924 et 1953, la surface de l’herbier est passée de 763 à 60 ha pour remonter ensuite à 164 ha en 1982. Après une période de relative stabilité jusqu’en 1992 où l’herbier s’étendait sur 179 ha, les surfaces couvertes ont nettement progressé pour atteindre, en 2002, 343 ha (Godet et al., 2008a). En 2008, les herbiers de Z. marina sont toujours en forte expansion à Chausey :
- les banquettes à lanices (Lanice conchilega) : de denses colonies de ces vers tubicoles piétent le sable entre le réseau de tubes. Ce polychète a la particularité de sélectionner préférentiellement les particules bioclastiques pour édifier son tube arénacé (Fournier et al., 2007b ; Godet et al., 2008b ; Toupoint et al., 2008) ;
- les velours à Vauchérie (Vaucheria spp) : ces algues vertes contribuent à stabiliser les vasières intertidales ;
- les gazons à Fucus lutarius : cette algue brune vasicole vit à moitié enfouie dans la vase. La longueur des frondes est en moyenne de 5 à 20 cm. C’est sur l’archipel de Chausey que se trouve la station la plus étendue à F. lutarius (2 ha) sur le littoral français où elle a longtemps été considérée comme endémique ;
- « l’usine à carbonates » : en zone subtidale, elle est formée par le maërl (Lithothamnium calcareum) et les crépidules (Crepidula fornicata) alors qu’en zone intertidale, les autres gastéropodes et les bivalves y contribuent de façon notable.

En conclusion, le modèle sédimentaire de l’archipel de Chausey se caractérise par :
- un système « dominant tidal » avec une influence secondaire de la houle ;
- la coexistence de deux systèmes de dépôts, l’un terrigène d’origine proximale, l’autre carbonaté d’origine proximale et distale ;
- une production carbonatée abondante compte-tenu du climat tempéré (association type Foramol et algue rouge) se traduisant par la mise en place d’importantes accumulations sédimentaires préférentiellement dans l’est de l’archipel, secteur plus calme d’un point de vue hydrodynamique ;
- la présence de biotopes intertidaux qui jouent un rôle actif sur la sédimentation (piégeage, sélection des particules, consolidation du substrat vaseux ou sableux, maintien en place des sables et vases).

Remerciements

Références

Vaslet D., Larsonneur C., Auffret J.-P. (1979) – Carte des sédiments meubles superficiels de la Manche à 1/50 000. BRGM-IFREMER, carte géologique de la marge continentale, Orléans.

Annexe C

Notes personnelles
Bibliographie

[8] Blott, S., Fournier, J., *Gradistat v. 4.1. A grain size distribution and statistics package for the analysis of unconsolidated sediments by 1\(\phi\), 1/2\(\phi\) or AFNOR sieving or Laser Granulometer*, Royal Holloway University of London, Centre National de la Recherche Scientifique, Dinard, 2004

[57] Vasslet, D., Larsonneur, C., Auffret, J.P., Carte des sédiments meubles superficiels de la Manche à 1/500 000, BRGM-IFREMER, carte géologique de la marge continentale, Orléans, 1979

Index

acide chlorhydrique, 26, 27, 51–53
AFNOR, 33, 43
analyse granulométrique, 9, 15, 17, 20, 27, 28, 32, 33, 43, 44
arénière, 44
balance de Martin, 10
benne à sédiment, 15, 20, 23
bioclaste, 27, 28, 33
boîte de Reineck, 17–18
calculétrique, 51
calculétre Bernard, 25, 26
capsule, 21
carbonate de calcium, 25, 27, 51
carbonate organique, 25
carréolier, 17–19
carte sédimentologique, 61–65
chlorure de sodium, 52
colloïdes, 27, 56
collone de tamis, 9, 10, 16, 23
concentration, 10, 33, 55, 57–60
courbe
leptokurtique, 38
mésokurtique, 38
platykurtique, 38
courbe granulométrique, 33–36, 39–41, 44–46
creuset, 54
définition granulométrique, 12
dessicateur, 25, 54
diamètre
équivalent, 9, 44, 45, 57
nominal, 44, 45, 49
diamètre de Først, 9
diffraction laser, 9, 11, 16, 28, 33, 44
découlement
laminaire, 59
semi-turbulent, 59
turbulent, 59
erlenmeyer, 26, 52
etuve, 22, 55
exo-diamètre, 9
exoscopie, 12
fabrique, 17
faciès
hyperbolique, 40, 56
logarithmique, 40, 56
parabolique, 40, 41, 56
figures longitudinales, 63
figures transversales, 63
floculation, 57–60
formule
de Berthois-Gendre, 44, 45
four à moulage, 25, 54
indice
d'acuité
de Folk et Ward, 38
de Inman, 38
de Krumbein et Pettijohn, 38
d'allongement
de Dapples et Rominger, 50
de Scheiderhohn, 50
d'aplatissement
de Cailleux, 50
de Wentworth, 50
d'asymétrie
de Inman, 37
de Krumbein, 37
de Pomerol, 38
de Trask, 37
d'hétérométrie
de Pomerol, 35
de dispersion
de Cailleux, 35
de Folk et Ward, 35
de Krumbein, 34
de MacCammon, 35
de Otto et Inman, 35
INDEX

de Trask, 34
de forme
 de Fleming, 51
de Folk, 51
de Rivière et Ville, 51
de rondeur
 d’Ouma, 50
de Cailleux, 50
de Wadell, 50
de Wentworth, 50
de sphéricité
 de Krumbein, 49
de Riley, 49
de Sneed et Folk, 49
de Wadell, 49
gain moyen de Folk et Ward, 35
isophile, 64
laboratoire, 20
loi de Stockes, 10, 28, 33, 44, 57
lutite, 43, 56
médiane, 34
méso-diamètre, 9
métrode
 de la perte au feu, 54, 55
 des moments statistiques, 38, 42, 43
 des percentiles, 34, 42, 43
 Walkley Black, 55
matière organique, 15, 54, 56
microscopie électronique à balayage, 12
mode, 34
morphoscopie, 11
mortier, 23, 54
nombre de Reynolds, 59
pélite, 56
passoire, 23
percentile, 34
peroxyde d’hydrogène, 21
phase biogène, 63
phase lithogène, 63
ϕ, 31, 34, 37, 38, 41–43
pilier, 16, 20, 21
pipette d’Andrensen, 10, 28, 44
profil, voir faciès
quartile, 34
régime
 d’Allen, 59
de Newton-Rittinger, 59
de Stockes, 59
refus de tamis, 10, 34, 38, 39, 41, 42
rudite, 44
sédigène, 33
sédimentométrie X, 9, 10, 33
séparateur, 15, 22
seringue, 16, 20
sismique réflexion, 61
sonar latéral, 63
sondeur bathymétrique, 63
tamis, 9, 23, 33, 34, 39, 41–43
tamisage, 9, 16, 20, 33, 34, 44, 46
à sec, 9, 10, 33
sous eau, 9, 10, 33, 44
tamiseuse, 10, 23, 33
tassement des vases, 56, 58
teneur en eau, 55
test de Passega, 34
vitesse de chute, 10, 28, 33, 44, 45, 57–60
vitesse entravée, 59
